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Abstract

We present a system architecture which facilitates
enhanced availability of tightly coupled distributed sys-
tems by temporarily relaxing constraint consistency.

Three different types of consistency are distinguished
in tightly coupled distributed systems - replica consis-
tency, concurrency consistency, and constraint consis-
tency. Constraint consistency defines the correctness
of the system with respect to a set of data integrity
rules (application defined predicates). Traditional sys-
tems either guarantee strong constraint consistency or
no constraint consistency at all. However, a class of
systems exists, where data integrity can be temporarily
relaxed in order to enhance availability, i.e. constraint
consistency can be traded against availability. This al-
lows for a context- and situation-specific optimum of
availability.

This paper presents the basic concepts of the trading
process and the proposed system architecture to enable
a fine-grained tuning of the trade-off in tightly coupled
distributed systems.

1. Introduction

Distributed systems are of unprecedented inter-
est and importance today, ranging from applications
present in daily life such as banking or health care
applications to highly specialized distributed systems
used in control engineering and air traffic control. De-
pendability [1] is necessary not only for safety-critical
applications but also to cope with the complexity of
distribution in general. Replication [2], the process of

maintaining several copies of the same entity (e.g. data
item, object, process) at different nodes, is used to en-
hance performance and fault tolerance of distributed
systems.

Three different kinds of consistency [3] are distin-
guished in distributed systems: Replica consistency de-
fines the correctness of replicas; i.e. it is a measure
how replicas of the same logical entity differ from each
other. Concurrency consistency is a correctness cri-
terion for concurrent access to a particular data item
(local isolation), usually employed in the context of
transactions. Thirdly, constraint consistency defines
the correctness of the system with respect to a set of
data integrity rules (application defined predicates). If
consistency has to be ensured all the time (e.g. bank-
ing applications) - even in the presence of failures -
the system becomes (at least partially1) unavailable in
degraded scenarios (e.g. node or link failures). On
the other hand, some applications exist where consis-
tency can be temporarily relaxed in order to achieve
higher availability. For instance, in some safety-critical
systems (e.g. [5]) or in some control engineering appli-
cations (e.g. [6]) availability is more important than
consistency.

We focus on tightly coupled distributed systems, i.e.
systems where components depend on each other to a
high extent. In contrast, interdependencies between
components in loosely coupled systems (e.g. Web Ser-
vices) are generally lower than in tightly coupled sys-
tems [7]. Another typical characteristic of tightly cou-
pled systems is that components interact via remote
procedure calls (RPC) whereas message or document

1Even if a majority partition or more generally - a quorum -
exists [4], significant parts of the system become unavailable.
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exchange are primary communication means in loosely
coupled systems.

In section 3, we present a simple example that shows
how constraint consistency (data integrity) can be tem-
porarily relaxed in order to gain improved availability
in tightly coupled distributed systems. In section 5
we present our main contribution, a system architec-
ture (called DeDiSys ) that is targeted to the system
model shown in section 4 and allows to configure this
trade-off in real-world distributed systems. Finally, in
section 6 we show how the core components of our sys-
tem architecture interact.

2. Related Work

Trading concurrency consistency or replica consis-
tency for increased availability has been investigated
in various research projects. For example, replica con-
sistency is addressed in [8] [9] [10] [11] and concurrency
consistency in [12] and [13]. The latter systems basi-
cally enhance availability by using weaker models than
serializability.

Traditional replicated systems either guarantee
strong replica consistency or no replica consistency
at all. TACT (Tunable Availability and Consistency
Trade-offs) [14] fills in the space between by providing
a continuous consistency model based on logical consis-
tency units (conits). The consistency level of each conit
is defined using three application-independent metrics
– numerical error, order error, and staleness. For in-
stance, in a replicated bulletin board service, where
users can post messages to any replica or retrieve mes-
sages from any replica, a conit covers all news mes-
sages. Numerical error limits the total number of mes-
sages posted system-wide but not seen locally, order
error bounds the number of out-of-order messages on
a given replica, and staleness limits the delay of mes-
sages. The TACT replication system enforces that the
specified limits are not exceeded. TACT provides a
fine-grained trade-off between replica consistency and
availability but does not deal with constraint consis-
tency.

In [8], the application developer can define replica
consistency on Data Objects using a large set of pa-
rameters. Data objects are passive entities that encap-
sulate data and provide operations on the data but do
not - in contrast to objects in our target applications -
invoke other objects.

All of the above mentioned projects have one com-
monality - they either do not deal with constraint
consistency or presume strong constraint consistency.
Therefore, our specific approach of temporarily relax-
ing constraint consistency (data integrity) to enhance

availability in tightly coupled distributed systems is not
researched.

The architecture of the above mentioned systems
is either not described at all or rather implicitly (as
in the case of TACT). General considerations regard-
ing distributed systems architectures are for example
described in [15] but do not address our specific ob-
jective of trading consistency against availability. The
strength of our approach is to identify coherence of
concerns and translate them into system components
that compose a novel system architecture for enhanced
availability. We believe both researchers and practi-
tioners building dependable distributed systems will
benefit from this paper.

3. Relaxing Data Integrity

The correctness criterion for tightly coupled dis-
tributed systems are data integrity constraints, such
as value constraints, relationship constraints (cardinal-
ity, XOR), uniqueness constraints and other predicates
[16]. We propose a middleware system architecture
(called DeDiSys) that allows to temporarily relax data
integrity constraints when node or link failures occur
(degraded operation) in order to enhance availability.
Full consistency is re-established (reconciliation) after
the failures are eventually repaired.

3.1. Constraint Priorities

Not all constraints of an application are of equal
importance. Some have to be satisfied at any point in
time while others might be relaxed temporarily when
failures occur. To allow such flexibility, we provide
different constraint classes with respect to the trading
of constraint consistency for availability:

• Critical constraints : must not be traded.

• Regular constraints : are tradeable during de-
graded operation and full reconciliation support
is provided by the DeDiSys middleware.

• Relaxable constraints : are tradeable during degra-
dation but full reconciliation is not done by the
DeDiSys middleware. We view them as “user en-
forced constraints” in the way that the applica-
tion/user has to re-establish consistency when the
system becomes healthy again.

3.2. Cardinality Constraint Example

Cardinality constraints restrict the number of asso-
ciations between classes. We have presented a sim-
ple ticket booking system in [17], which consists of
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three replicated (database) servers that store informa-
tion about persons that buy tickets for an event. A
customer who wants to buy a ticket interacts with one
of the server nodes.
The system is characterized by the following cardinal-
ity constraints:

1. A person is allowed to buy no more than three
tickets for an event. (C1)

2. A ticket is owned by exactly one person. (C2)

The first constraint is a relaxable one, i.e. it can
be temporarily relaxed but the second constraint can
never be relaxed - it is a critical constraint.

During normal operations both constraints have to
be fulfilled and the servers are always synchronized, i.e.
both replica consistency and constraint consistency are
maintained. However, when network partitions occur,
the servers cannot synchronize their state any more.
Traditionally, the system or parts of it would block
till the link failure is repaired. However, in order to
enhance availability, we temporarily relax C1. For ex-
ample, assume a person has already bought two tickets
for an event before the network split occurs. Our sys-
tem allows the person to buy a third ticket at each
one of the three server nodes, since the constraint is
relaxable. The servers cannot communicate due to the
network splits; hence, it is possible that the person
buys five tickets in total. This means, the constraint
is potentially (temporarily) violated during degraded
operation.

Full constraint consistency has to be re-established
when the network failure is repaired (reconciliation
mode) - therefore, the person can only tentatively buy
tickets during degraded operations. In the example sys-
tem this can be achieved, if the tickets are only sent to
the customer, when the degradation is repaired. This
means, if five tickets have been bought, two of the ticket
purchases are rejected during reconciliation and only
three are eventually sent to the customer.

4. System Model

Some of the system model parameters presented in
this section have been taken and generalized from two
real-world distributed object systems that are typical
target applications for our proposed system architec-
ture - the Distributed Telecommunication Management
System (DTMS) [5] and the Advanced Control System
(ACS) [6]. The DTMS is a control and monitoring sys-
tem for distributed voice communication systems and
is used in air traffic control. The ACS is a CORBA-
based framework for building complex control systems

and is for example currently used in high energy physics
facilities.

Based on the two scenarios, we focus on tightly
coupled, object-based distributed systems with up to
about 30 server nodes and an arbitrary number of
client nodes. Server nodes host objects which are repli-
cated to other server nodes in order to achieve fault-
tolerance. The system is preconfigured, i.e. the number
and name of nodes is known in advance. The average
size of objects is about 2 - 5kB, the maximum size
is around 100kB. The number of objects ranges from
10 000 to 1 million but not many concurrent opera-
tions on objects are performed, i.e. up to 20 objects
are accessed per second throughout the system. The
read/write ratio of object invocations is about 10:1 and
we assume nested object invocations. About 10 percent
of object invocations access objects on other nodes.

We assume a partially synchronous distributed sys-
tem where node clocks are not synchronized, but where
the message transmission time can be bound. In this
system a group membership service [18] is taken as the
basis to monitor the state of each server node, report-
ing thus about node failures and node recoveries. Since
objects have a persistent state, the failure model being
adopted is the “pause-crash” model as described in [19].

The underlying network is a local or wide area net-
work, where partitions might occur. However, we
assume a network with guaranteed bandwidth, e.g.
leased lines with around 2Mbit. Communication ser-
vices follow the “link” failure model suggested in the
“crash+link” failure semantics of [20]. In order to pro-
vide link failure semantics for the communication ser-
vices we use communication protocols that also use
the membership services outlined above. The link fail-
ure semantics assumes that a communication link only
loses messages when it fails, but otherwise it is able to
deliver all its messages reliably in FIFO order. This
is not difficult to achieve for point-to-point messages
(TCP can be a valid solution), but the replication pro-
tocols require broadcasts instead of point-to-point mes-
sages. Therefore, we need a communication toolkit
that provides at least reliable FIFO broadcasts [21].

A relaxed passive replication model is employed. In
passive replication [22, 23], which is also known as
primary-backup or primary-copy, the so-called primary
replica initially processes the request and then sends
the updates, or backups, to the other replicas. We
relax this for read-only operations, i.e. read-only oper-
ations can be served by any secondary replica.
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5. System Architecture

5.1. Overview

Figure 1 shows our (platform-independent) mid-
dleware system architecture that supports the fine-
grained trading between constraint consistency and
availability. Interactions between architectural com-
ponents are denoted using arrows. Some interac-
tions have been omitted to enhance the readability of
the figure, e.g. the Transaction Manager communi-
cates with several components. Our middleware ex-
tension called DeDiSys is built upon a standard oper-
ating system, existing middleware like CORBA, EJB,
or COM/COM+/.NET, and uses standard point-to-
point transport protocols (TCP/UDP). Furthermore
DeDiSys uses off-the-shelf stable storage mechanisms
(typically a database) and existing persistence solu-
tions (e.g. persistence frameworks). Some other com-
ponents might also be already provided by the specific
middleware (e.g. the Transaction Manager); however,
since this is platform-dependent we consider these com-
ponents explicitly. Applications (business logic) are
built on top of DeDiSys.

The core components of DeDiSys are the Constraint
Consistency Manager and the replication system (con-
sisting of the Replication Manager and the Replication
Protocol). The replication system utilizes the Group
Membership Service, the Group Communication tool
and interacts with the Invocation Service and the Nam-
ing Service. Further components are the Transaction
Manager and the Activation Service.

5.2. Architectural Components

5.2.1 Replication System

Replication is the primary means to achieve fault-
tolerance in our middleware infrastructure. The repli-
cation system is divided into two sub-parts: the Repli-
cation Manager and the Replication Protocol.

Replication Manager: The Replication Manager
keeps track of object replicas in the system. Thus,
it maintains a mapping between global object IDs and
replica IDs with their location and role (primary or
backup replica). It supports different passive replica-
tion protocols and performs the following tasks:

• Add or remove replicas for a logical entity

• Change the role of a replica

• Select a given replica according to some criteria:
e.g. primary, backup, readable, writable, etc.

AS Activation Service
CCMgr Constraint Consistency Manager
GC Group Communication
GMS Group Membership Service
LS Location Service
NS Naming Service
MW Middleware
TxMgr Transaction Manager

DeDiSys

Application
(Business Logic)

DeDiSys Tool, 
Deployment and 

Runtime Configuration

Persistence

Stable Storage

Point-to-Point
Transport

(TCP/UDP)

MW e.g. CORBA, 
COM+,
EJB,
.NET

Operating system

User

Admin

Platform-specific
MW Supplement

CCMgr

Replication
Protocol

Replication
Manager

NS

TxMgr

GMS GC

Invocation
Service

AS

LS

Figure 1. DeDiSys system architecture

• Provide the locations of the replicas of a logical
entity

The location service for replicas is closely integrated
with the replication manager.

Replication Protocol: We have developed a passive
replication protocol that supports the trading of con-
sistency against availability. The key idea is that some
operations can be performed in all partitions when net-
work failures occur. In contrast to the traditional pri-
mary partition approach [24], which allows only one
partition to continue, a new primary is chosen if the
original primary copy is not available in a partition.
Hence we call it the “primary-per-partition protocol”
or simply “P4 protocol” [25].
The protocol consists of three modes: normal mode,
degraded mode, and reconciliation mode.
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During the normal mode, it behaves similar as a
traditional (relaxed) primary-backup protocol. Write
operations are forwarded to the primary replica2 and
read operations can be served by any replica. However,
the difference is that constraints have to be checked
before an operation can proceed. The updates are only
propagated to the backup replicas, if the constraints
are satisfied; otherwise, the operation is aborted. The
constraint checking process is described in detail in [16]
and [25].

In degraded mode, i.e. when node and/or link fail-
ures are present, write operations cannot be directed
to the original primary copy if the primary is not in
the partition. The operation is aborted immediately if
a critical constraint is affected. If only non-critical con-
straints (regular, relaxable) are involved, a secondary
copy is promoted to a new primary copy (according to
some pre-defined strategy) and performs the operation.

Since updates that are not covered by critical con-
straints are allowed in different partitions (i.e. several
primaries can be elected in different partitions), con-
flicts might occur which have to be resolved during
the reconciliation mode. This mode consists of three
steps: First, consistency among primary replicas is re-
established (e.g. by application interaction). After-
wards, all affected constraints have to be re-evaluated.
If some of the relaxable constraints are violated, the
application is asked again to restore constraint consis-
tency. Constraint violations concerning regular con-
straints can be solved automatically without applica-
tion interaction by means of a roll-back. However, this
is more costly since previous versions of objects have
to be kept. Finally, all secondary replicas are updated.

We are currently about to refine the algorithm (e.g.
by supporting an automatic roll-forward mechanism as
alternative to roll-back) and to provide safety and live-
ness properties [26]. The modes of the primary-per-
partition protocol and an analytical comparison with
the primary partition model are described in detail in
[25]. The analytical study shows that the P4 performs
better than the primary partition approach if the num-
ber of critical constraints is small, i.e. if constraint
consistency can be temporarily relaxed.

5.2.2 Group Membership Service

DeDiSys requires a membership monitor in order to
keep track of reachable server nodes in the system.
Handler routines are registered with the view-based
membership monitor and are called when a view change
occurs. A view change can occur when a node fails,

2Primary replicas of different objects can be hosted on differ-
ent nodes.

partitioning occurs, a node recovers or partitions are
re-joined. Further details on the proposed group mem-
bership service can be found in [18].

5.2.3 Group Communication

The group communication component provides multi-
cast support for groups of replicas. FIFO reliable mul-
ticast is sufficient for our primary-backup replication
protocol.

5.2.4 Constraint Consistency Manager

This component manages constraint consistency of ap-
plication data based on the definition of data integrity
constraints. Currently, static constraints are supported
since they are the common case; however, in principle
it is possible to consider dynamic constraints as well.
(Static constraints restrict the state of an object itself
whereas dynamic constraints restrict state changes.)
Basically, the functionality of the constraint consis-
tency manager can be divided into three major tasks:

• Ensuring data integrity in a healthy system by
triggering constraint validation.

• Triggering negotiation of whether data integrity
should be actually traded for individual non-
critical (regular, relaxable) constraints in a de-
graded system.

• Supporting re-establishment of constraint con-
sistency after a node/link-failure was repaired
through re-evaluation of constraints that were af-
fected by an availability-consistency trade-off.

5.2.5 Transaction Manager

The Transaction Manager provides support for dis-
tributed (possibly nested) transactions.

5.2.6 Naming Service

In literature, naming service and location service are
used in various ways, dealing with human readable
names, identities and addresses - location-dependent or
location-independent. In our case, the naming service
resolves names to object identities, while the replica-
tion manager - among others - provides the location
service for business objects and maps object identi-
ties to (location-dependent) addresses. However, in
the case of infrastructural objects the naming service
resolves their names to local addresses directly, if a
naming service is used at all.
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Client IS Interceptors TxMgr RM IS Interceptors TxMgr RP Object CCMgr

write Object

beforeOperation

beginTx()

getPrimary()

send invocation

beforeOperation

beginSubTx()

register(Object2)

check preconditions

invoke()

afterOperation

check postconditions

propagateUpdates()

Details of update propagation are shown in figure 3

commitSubTx()

afterOperation
commitTx()

primary replica

NODE 1 NODE 2

Figure 2. Interaction between DeDiSys core components

5.2.7 Activation Service

The Activation Service, a component local to its node,
activates objects based on the serialized/persisted ob-
ject state.

5.2.8 Invocation Service

The invocation service, another local service, provides
the invocation logic used for invocation of methods
within the system and provides specific guarantees with
respect to node or link failures. It further provides the
possibility to intercept object invocations and trans-
mits additional data with an object invocation, e.g.
the identifier of a transaction to associate a specific
call with a transaction. This, however, is not visible to
upper layers.

6. Interaction between DeDiSys Core
Components

The replication protocol is triggered by interceptors
that are registered with the invocation service (IS). Fig-
ure 2 shows a sequence diagram of a non-nested invo-
cation in a healthy system with our replication proto-
col. For simplicity it is assumed in the diagram that
all constraint evaluations are positive. Furthermore,
details of the transaction manager (TxMgr), e.g. com-
mit protocol and other interactions between individual
transaction manager components, are omitted. When
a client invokes a method of an object, an interceptor is
executed. This interceptor starts a transaction. Next,
the primary copy of the invoked object is obtained from
the replication manager (RM). The primary copy’s id
is installed as the destination for the invocation (this
is omitted from the diagram). The invocation is then
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getSecondaries()

multicast updates

beginSubTx()

register(Secondary)

setState()

commitSubTx()
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primary replica
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Figure 3. Update propagation

sent to the node hosting the primary copy of the ob-
ject, where the actual invocation is intercepted again.
The interceptor starts a sub-transaction. Before the
invocation can occur, precondition constraints have to
be evaluated by the constraint consistency manager
(CCMgr). If the constraint evaluation is positive, the
object operation is invoked. When the call returns,
another interceptor is executed, which initiates evalu-
ation of postcondition constraints. The update prop-
agator component of the replication protocol (RP) is
called afterwards, if the constraint evaluation is posi-
tive. The update propagator gets a list of all secondary
copy owner nodes from the replication manager and
multicasts the local updates to that list of nodes. On all
nodes that receive an update the updates are installed
within a sub-transaction (illustrated in Figure 3). Be-
fore the interceptor terminates, the sub-transaction is
committed. The invocation service returns the result
to the client object, where another interceptor starts
the commit protocol. Details of the commit protocol
are omitted from the diagram.

7. Conclusions and Future Work

Our key idea is to temporarily relax non-critical data
integrity constraints when node or link failures arise in
order to enhance availability of the system. We have
designed a system architecture that supports the trade-
off between availability and constraint consistency in
tightly coupled distributed systems. Consistency is re-

established after the system continues to operate nor-
mally. The core components of our proposed architec-
ture are the constraint consistency manager that facili-
tates the trading and a replication system consisting of
a replication manager and specific replication protocols
that support this trade-off.

So far we have evaluated our replication protocols
and the core components using our Java-based DeDiSys
Lite Environment [25]. Future work includes deploy-
ment of our system architecture to two industrial sys-
tems - the Distributed Telecommunication Manage-
ment System [5] and the Advanced Control System [6]
using EJB, CORBA, and .NET technologies.
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