
What Service Replication Middleware Can Learn from
Object Replication Middleware

Johannes Osrael
j.osrael@tuwien.ac.at

Lorenz Froihofer
l.froihofer@tuwien.ac.at

Karl M. Goeschka
k.goeschka@tuwien.ac.at

Institute of Information Systems, Vienna University of Technology
Argentinierstrasse 8, 1040 Vienna, Austria

ABSTRACT
Replication is a well-known technique to enhance depend-
ability and performance in distributed systems. A plethora
of replication middleware for distributed object systems has
been proposed in the past decade. However, replication in
service-oriented systems is still in its infancy. In this paper,
we analyze some of the proposed service replication middle-
ware solutions and compare them on an architectural level
with object replication middleware. In particular, we focus
on replication middleware that allows for (but is not lim-
ited to) strict consistency of replicas since this is required
by many real-life applications. We identify six major infras-
tructure components and present a generalized architecture
for both distributed object and service-oriented replication
middleware. The result of our comparison is unambiguous:
Replication middleware for service-oriented systems and dis-
tributed object systems (such as FT-CORBA) share many
commonalities and only subtle differences caused by the dif-
ferent granularity of the replicated entity, or different trans-
action models.

Categories and Subject Descriptors
C.2.4 [Computer - Communication Networks]: Dis-
tributed Systems; D.2.11 [Software Engineering]: Soft-
ware Architectures

General Terms
Design

Keywords
Replication, middleware, architecture, service-oriented sys-
tems, distributed object systems

1. INTRODUCTION
Service-oriented architectures are more and more adopted

by industry in almost all areas of computing. If the success

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MW4SOC ’06, November 27-December 1, 2006 Melbourne, Australia
Copyright 2006 ACM 1-59593-425-1/06/11 ...$5.00.

continues and the service-oriented computing approach is
applied in critical, vital systems—such as air traffic control
systems, health care systems, nuclear power plants, chemical
refineries, public transportation, etc.—dependability needs
to be ensured.

Dependability is the “ability of a system to avoid service
failures that are more frequent or more severe than is ac-
ceptable” [4]. Fault tolerance, which ensures that a service
failure can be avoided if faults are present in the system, is
one of the techniques to achieve dependability.

Redundancy is the key to fault tolerance. Fault tolerance
cannot be achieved without redundancy. Replication of both
hardware and software resources is one important means to
introduce redundancy and thus to enable fault tolerance. As
pointed out by Ken Birman [8], “only replication can ensure
access to critical data in the event of a fault.”

Replication in distributed object, database systems, and
file systems is well-established; however, only few replication
solutions exist for service-oriented systems.

While replication of stateless services is comparatively
easy to achieve, replication of stateful services requires syn-
chronization of the replicas’ state. A stateful service keeps
state either in memory (non-persisted, transient state) or
persists it in a data store (persisted state) such as a file or
a database. The latter type of stateful service can be mod-
eled as a stateless “access” service plus a stateful resource.
Thus, for this type of service, state synchronization of repli-
cas can be performed either via the underlying data store
(i.e., a database or file replication system) or via the service
interface. The few service replication middleware solutions
proposed so far are not restricted to services that store their
state in a data store and thus perform replication on the
service level and not on the data level. Unfortunately, some
of the proposed service replication middleware systems are
obviously not fault tolerant (e.g., [15]) since many subtleties
(e.g., crash of a primary replica during update propagation
to backups, etc.) are not yet considered. Thus, we be-
lieve closer cooperation between the dependability and the
service-oriented community is needed to reach sufficient ma-
turity, necessary for deployment of service-oriented systems
in safety- and mission-critical settings.

Thus, in this paper we contribute to the understanding
of replication middleware by an architectural comparison of
some of the rather mature and well-designed service-oriented
solutions with well-established replication middleware for
distributed object systems. In particular, we focus on mid-
dleware that provides replication protocols that allow for
strict replica consistency (e.g., linearizability [3]) since this

18

froihofer
Textfeld
© ACM, 2006. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in the Proc. 1st Workshop on Middleware for Service Oriented Systems http://dx.doi.org/10.1145/1169091.1169094

is required by many real-life applications. For example,
primary-backup [9] replication (also known as passive repli-
cation) and active [25] replication allow1 for strict consis-
tency. In the former variant, the primary replica processes
the request and forwards the update to the backup repli-
cas. In the latter variant, the client sends the request to
all replicas—either directly or via a communication module
[27].

We consider middleware that can cope with crash failures
[11] and link failures but we do not focus on Byzantine fault-
tolerant middleware (e.g., [17]) since Byzantine behavior is
rarely encountered in practice.

Paper Overview. Section 2 presents state-of-the art mid-
dleware architectures, both from the service-oriented and
distributed object world. Based on these representative ar-
chitectures, six major infrastructure components for replica-
tion middleware are identified in Sect. 3. Furthermore, the
commonalities and differences of these building blocks with
respect to service-oriented and distributed object systems
are discussed. Section 4 covers related work before we draw
our conclusions in Sect. 5.

2. MIDDLEWARE ARCHITECTURES
Few middleware solutions have been proposed for service-

oriented systems: The middleware systems presented in [29,
23] offer transparent active replication based on group com-
munication [10]. Primary-backup replication of Web ser-
vices is offered by the FT-SOAP (Fault-Tolerant SOAP)
middleware [16]. Thema, a byzantine fault-tolerant mid-
dleware for Web service applications is proposed in [17].
ADAPT [5] is a J2EE replication framework integrated into
the JBOSS application server that allows to plug-in replica-
tion protocols. Besides replication of Enterprise JavaBeans
it supports replication of AXIS Web services as well. The
Web services might contain session state but services that
invoke other EJBs or call a database are not supported.
Among these few solutions, we concentrate on FT-SOAP
[16] and the active replication middleware systems [29, 23]
since primary-backup and active replication are the most
commonly used replication techniques in real-world applica-
tions. We compare these middleware systems with the FT-
CORBA (Fault-Tolerant Common Object Request Broker
Architecture) specification [19] and the DeDiSys replication
middleware [20] for distributed objects. We have chosen
FT-CORBA since it is a well-known standard and DeDiSys
since it has been implemented on the three major middle-
ware platforms J2EE, Microsoft .NET [21], and CORBA [7].
FT-CORBA supports both active and passive replication
while DeDiSys is targeted to the latter replication model.

2.1 Service-Oriented Systems

2.1.1 Primary-Backup Replication Middleware
Figure 1 shows the architecture of the FT-SOAP replica-

tion middleware [16]. The original presentation of the ar-
chitecture in [16] has been redrawn to allow for easier com-
parison with the object replication middleware. As in the
FT-CORBA architecture, the key components in FT-SOAP

1Of course, primary-backup replication can also be config-
ured for weaker forms of consistency, e.g., by employing a
lazy update propagation scheme.

are the Replication Manager, the Fault Management unit
and the Logging & Recovery unit. SOAP engine intercep-
tors are used to intercept client requests. WSDL files of
replicated services are published in a UDDI registry.

Figure 1: FT-SOAP

The FT-SOAP replication manager basically provides in-
terfaces for (i) setting the desired replication properties like
the replication style, initial number of replicas, etc. and (ii)
creating and managing service groups. The fault manage-
ment unit, used to monitor replicated services, consists of a
fault detector and a fault notifier. In FT-SOAP, a central-
ized reliable file system is used to log invocations in order
to allow for recovery processes. If necessary, invocations are
replayed during the recovery stage.

2.1.2 Active Replication Middleware
The middleware presented in [29] offers transparent active

replication based on group communication. The system im-
plements the TOPBCAST [14] probabilistic multicast pro-
tocol using the JGroups toolkit [1]. Both synchronous and
asynchronous interaction between the client and the Web
service are supported.

WS-Replication [23] is a framework for wide area replica-
tion of Web services and offers transparent active replica-
tion. The major components in WS-Replication are a Web
service replication component and a reliable multicast com-
ponent. The former component enables active replication
of Web services while the latter—called WS-Multicast—
provides SOAP-based group communication. Moreover, WS-
Multicast performs failure detection (which is required for
group communication) by a SOAP-based ping mechanism.
WS-Multicast can also be used independently from the over-
all WS-Replication framework for reliable multicast in a
Web service environment. The SOAP group communication
support has been built upon the JGroups [1] toolkit.

2.2 Distributed Object Systems

2.2.1 Fault-Tolerant CORBA Architecture
Originally, CORBA [19], a popular middleware framework

for object-oriented distributed systems, lacked of support for
fault tolerance. Thus, FT-CORBA [19] has been introduced
to overcome this short-coming. The FT-CORBA standard
defines an architecture which supports a range of fault tol-
erance strategies, including active and passive replication of
CORBA objects. In FT-CORBA, replicated objects consti-
tute an object group, which is referenced by an Interoperable
Object Group Reference (IOGR). Clients invoke operations
on object groups. The core components of the FT-CORBA

19

infrastructure are the Replication Manager, the Fault Man-
agement unit, and the Logging & Recovery unit. The speci-
fication defines replication manager interfaces for operations
to (i) set replication properties (e.g., passive vs. active repli-
cation), (ii) manage object groups (e.g., add/remove mem-
bers), and to (iii) create and destroy objects. A fault detec-
tor monitors replicated objects, servers, or processes and re-
ports faults to a notification component, which in turn prop-
agates the information to interested components, e.g., the
replication manager. This allows the replication manager to
act upon reported faults, e.g., to choose a new primary if the
original fails, to create new replicas, etc. Logs, containing
the state and actions, are maintained per object group by
the logging mechanism. The recovery mechanism processes
the log and brings new, recovering, or backup replicas to the
current state.

FT-CORBA does not specify group communication prim-
itives. Thus, in order to provide for example active repli-
cation, FT-CORBA implementations must use proprietary
group communication mechanisms [6].

2.2.2 DeDiSys Replication Architecture
Figure 2 shows the replication architecture of the platform-

independent DeDiSys middleware [20]. DeDiSys builds upon
standard middleware like J2EE, Microsoft .NET, or CORBA.
Thus, some of the DeDiSys components are already pro-
vided by the standard middleware, e.g., the Transaction Ser-
vice. Furthermore, DeDiSys uses off-the-shelf stable storage
mechanisms (typically a database) and existing persistence
solutions (e.g., persistence frameworks).

The core components of the DeDiSys replication architec-
ture are the Replication Manager, the Replication Protocol),
the Group Membership Service, and the Group Communi-
cation component. Further components are the Invocation
Service, the Naming Service, the Transaction Manager, the
Activation Service, and the Persistence/Stable Storage com-
ponent.

Persistence/
Stable Storage

Replication
Manager

Replication
Protocol

Group
Membership

Service

Group
Communication

Activation
ServiceTransaction ServiceNaming Service Invocation Service

Standard Middleware: e.g., EJB, .NET, CORBA

Figure 2: DeDiSys Replication Middleware

The Replication Manager keeps track of object replicas in
the system. Thus, it maintains a mapping between global
object IDs and replica IDs with their location and role (pri-
mary or backup replica). The DeDiSys replication manager
supports the passive replication model. A location service
for replicas is closely integrated with the replication man-
ager.

The Replication Protocol component provides the specific
replication logic for a given replication protocol. In case of

primary-backup replication, client invocations are initially
processed at the primary replica. Afterwards, the updates
are propagated to the backup replicas. Besides the replica-
tion logic during healthy periods, the behavior of the proto-
col in the presence of faults needs to be specified in this com-
ponent. Furthermore, synchronization with other replicas in
case of the recovery of a replica needs to be performed by
the replication protocol. In addition, some replication pro-
tocols, like the primary-per-partition protocol [20] require
logging of operations or states.

A group membership service is used to keep track of which
nodes are operational, taking into account intentional group
changes (join or leave) as well as node and link failures.
Group communication provides reliable multicast to groups
with configurable delivery and ordering guarantees.

Group membership and group communication services can
be treated as separate components which interact with each
other. However, in practice, both components are usually
integrated in one toolkit which is referred as view-oriented
group communication system [10].

3. ARCHITECTURAL COMMONALITIES
AND DIFFERENCES

3.1 Generalized Architecture
Based on the representative architectures discussed in Sect.

2, six major architectural units for both object and service
replication middleware can be identified as shown in Fig.
3: A Multicast Service, a Monitoring Service, a Replication
Manager, a Replication Protocol unit, an Invocation Service
and an optional Transaction Service. Some of the units such
as the replication protocol and the multicast service are nat-
urally distributed since they realize distributed algorithms.
The other components should also be implemented in a dis-
tributed fashion in order to avoid single points of failure and
to provide an adequate level of fault-tolerance for the infras-
tructure itself. For instance, a replication manager instance
resides on every node in the system that hosts business ser-
vices/objects. Even more so, the state of the replication
manager is also subject to replication. Besides these six
major components, replication middleware typically com-
prises further supportive components such as a naming ser-
vice (e.g., for resolving human-readable names to identities)
or some kind of persistence service (e.g., for object-relational
mapping).

Replication
Manager

Replication
Protocol

Monitoring
Service

Multicast
Service

Transaction Service Invocation Service

Figure 3: Generalized Replication Architecture

The infrastructure components share many conceptual com-
monalities and have only subtle differences with respect to

20

their realization in service or object replication middleware.
We discuss them in detail in the next subsections.

3.2 Multicast Service
Reliable multicast primitives are needed both in object

and service replication middleware, e.g., for propagation of
updates from the primary to the backup replicas in case
of passive replication. Schiper [24] points out that group
communication, a communication infrastructure that eases
the implementation of replication techniques, is beneficial
for both active and passive replication. Active replication
requires ordering of operations, which can already be pro-
vided by a group communication primitive. Group commu-
nication primitives hide most of the (implementation) com-
plexity of passive replication: For instance, group commu-
nication allows to cope with undesirable situations such as
the crash of the primary during a multicast. Whether the
replicated entity is a service or an object does not impose
any conceptual differences in this respect. Indeed, most of
the presented middleware architectures rely on group com-
munication. Examples for state-of-the-art group communi-
cation toolkits are JGroups [1], Spread [28], or the newly
proposed SOAP-based WS-Multicast toolkit [23], which is
specifically targeted to service-oriented systems. The only
noteworthy difference compared to traditional group com-
munication toolkits is that WS-Multicast exposes its opera-
tions via a WSDL (Web Services Description Language) [26]
interface. However, this could also be realized for the other
toolkits.

3.3 Monitoring Service
Monitoring of the replicated entities and detection of faults

is required both in distributed object and service-oriented
systems since replication middleware needs to take appropri-
ate actions in case of a fault. For instance, in case of passive
replication, it has to promote a backup to a new primary
replica if the original primary crashes. If a group communi-
cation toolkit is used as in DeDiSys [20] and WS-Replication
[23], the group membership unit already provides this func-
tionality on the node level.

3.4 Replication Manager
Both in distributed object and service-oriented systems,

some component is necessary which manages replicated ser-
vices/objects, including tasks such as storing the location
and role of replicas, maintaining service/object groups, gen-
eral configuration of the replication middleware such as the
replication style, etc. Typically, this component is called
the replication manager (e.g., in FT-SOAP [16], DeDiSys
[20], FT-CORBA [19]). The Web service replication compo-
nent of the WS-Replication framework [23] provides similar
functionality. Though the tasks of this component are iden-
tical for service and object replication middleware, minor
differences are caused by the different granularity (typically
coarse-grained in case of services and usually fine-grained
in case of objects) and the number of the replicated ser-
vices/objects. For instance, a replication manager in object
replication middleware typically needs to maintain a huge
number of objects (e.g., millions) while the number of ser-
vices that need to be replicated is comparatively small. This,
for example, influences the choice of the data structure for
the replica location service which is part of the replication
manager.

3.5 Replication Protocol
The actual replication logic (i.e., triggering of update prop-

agation, recovery, etc.) is typically either a separate compo-
nent (e.g., in the DeDiSys replication middleware) or em-
bedded in the replication management unit (e.g., in the
CORBA-based Eternal system [18] or in the WS-Replication
middleware [23]). The advantage of a separate replication
protocol component is that a change of the protocol (e.g.,
necessary due to system evolvement) is easier to achieve.
Again, in this respect no differences between service-oriented
and distributed object middleware arise.

3.6 Invocation Service
An invocation service provides the invocation logic used

for invocation of operations and provides specific guaran-
tees with respect to node or link failures. It further pro-
vides the possibility to intercept service/object invocations
and transmits additional data with an invocation, e.g., the
identifier of a transaction to associate a specific call with a
transaction. Both distributed object replication middleware
and service replication middleware exhibit such interceptors:
For instance, the DeDiSys replication middleware [20] uses
the interception mechanism of the JBOSS application server
(in the J2EE version of the framework) and .NET Remoting
interceptors (in the .NET variant). The Web service replica-
tion component of the WS-Replication framework [23] com-
prises a proxy generator which generates a proxy for each
Web service operation. The proxy intercepts invocations to
the replicated Web service and triggers the further replica-
tion logic.

3.7 Transaction Service
Transactions are a fault tolerance technique by themselves;

specifically the atomicity and durability properties of tradi-
tional ACID transactions are related to fault tolerance [24].
Atomicity denotes that either all or none of the transaction’s
operations are performed. Durability requires that the com-
mitted effect of transactions is permanent, such that the
data are available after a failure or system restart. How-
ever, since durability has its limitations (e.g., some fail-
ures such as a disk crash are not recoverable), replication
needs to be introduced in critical transactional systems.
Thus, transactions need to be performed on replicated ob-
jects or services. While distributed object replication mid-
dleware often supports transactions (e.g., DeDiSys middle-
ware [20]), support for transactions in replication middle-
ware for service-oriented systems is rather in its infancy. Up
to our knowledge, only WS-Replication [23] has been com-
bined with transactional support. WS-Replication has been
successfully tested in combination with long running trans-
actions as defined in the Web Services Composite Applica-
tion Framework (WS-CAF) [2]. In contrast to short-running
ACID transactions, long running transactions provide atom-
icity guarantees despite relaxing the isolation property. Com-
pensation actions are required to reverse the effects of long
running transactions in case of conflicts. Although the com-
bination of WS-Replication with transactions yielded promis-
ing results, there is clearly a need for further research in this
area, especially with different replication protocols and other
transaction models.

Table 3.7 summarizes the commonalities and differences of
object and service replication middleware.

21

Object Replication Middleware Service Replication Middleware
Granularity typically fine-grained (objects) typically coarse-grained (services)
Multicast Service group communication beneficial group communication beneficial
Monitoring Service failure detector, group membership service failure detector, group membership service
Transaction Service typically ACID transactions ACID and long running transactions
Replication Manager maintains large number of replicated entities maintains small number of replicated entities
Replication Protocol separate or embedded separate or embedded
Invocation Service interceptors interceptors

Table 1: Commonalities and Differences

4. RELATED WORK
Up to our knowledge, no comparison of object and ser-

vice replication middleware architectures exists in literature.
Similarities between these two worlds with respect to repli-
cation are mentioned in [23] but not described. Although
object replication middleware is well-established, architec-
tural comparisons are even hard to find within this area.
One noteworthy exception [12] discusses both early fault tol-
erant CORBA implementations and the FT-CORBA stan-
dard; however, with a strong focus on the latter and no
relation to service-oriented systems. Besides this excellent
CORBA-specific work, “related work” sections of replica-
tion middleware papers (e.g., [22]) typically contain brief
comparisons, which lack in-depth coverage as our compari-
son provides. Moreover, most of the scientific papers about
replication in the traditional distributed computing field fo-
cus on the algorithms and not on the middleware providing
the replication protocols. Thus, the replication architec-
ture is often not described at all or rather implicitly. For-
tunately, as seen in Sect. 2, at least some of the replication
middleware architectures in both the distributed object and
service-oriented field are well described and allow a thorough
comparison.

Replication of data stores such as databases or file sys-
tems, which can be used on the data level of a service-
oriented system if stateful services persist their state in a
data store, has been extensively discussed in scientific lit-
erature. Oliveira et al. give an excellent overview about
state-of-the-art in database replication [13]. Wiesmann et
al. [27] compare replication protocols in database systems
with replication in distributed object or process systems but
do not focus on middleware architectures.

5. CONCLUSIONS
In this paper, we compared state-of-the-art service repli-

cation middleware with object replication middleware on an
architectural level. Since strict consistency is required by
many real world applications, the focus of our comparison
was on frameworks that provide the most common repli-
cation techniques that allow for strict consistency, namely
active and passive replication.

Replication is rather in its infancy in service-oriented sys-
tems; thus, only a small number of replication middleware
solutions was suitable for our comparison [23, 16, 29].

Among the replication architectures for distributed ob-
ject systems we have chosen the well-known FT-CORBA
standard [19] and the DeDiSys architecture [20] due to its
realization on the three major middleware platforms J2EE,
Microsoft .NET, and CORBA.

The result of our comparison is unambiguous: Object and
service replication middleware share many commonalities

and only subtle differences. Both kinds of replication mid-
dleware require six major infrastructure components:

• A Multicast Service for reliable, ordered dissemination
of operations.

• A Monitoring Service for detection of faults in the sys-
tem (e.g., crash of a service).

• A Replication Manager, mainly for maintenance of ob-
ject/service groups and overall configuration of the
replication logic.

• A Replication Protocol unit for providing the actual
replication logic (e.g., primary-backup protocol).

• An Invocation Service providing the invocation logic
(interception of client invocations, conveyance of the
transaction context, etc.)

• An optional Transaction Service for supporting trans-
actions on replicated entities.

Minor differences between the components are caused by
(i) the different granularity of objects and services, (ii) differ-
ent transaction models, and (iii) different technology stan-
dards (e.g., CORBA vs. Web services standards) used in
both worlds.

As long as replication techniques are needed that allow
for (but are not limited to) strict consistency, we believe the
service-oriented community will benefit from our comparison
since it clearly shows that the wheel need not be re-invented:
We recommend to take a look at the well-established repli-
cation solutions for distributed object systems and apply
the same concepts and even the same system architecture
to service-oriented systems.

Future research challenges for replication middleware in
service-oriented systems are (i) heterogeneous administra-
tion domains (e.g., better support by standardizing inter-
faces and architectures) and (ii) dynamic composition of
services.

6. ACKNOWLEDGEMENTS
This work has been partially funded by the European

Community under the FP6 IST project DeDiSys (Depend-
able Distributed Systems, contract number 004152,
http://www.dedisys.org).

7. REFERENCES
[1] JGroups: A toolkit for reliable multicast

communication. http://www.jgroups.org.

22

[2] Arjuna, Fujitsu, IONA, Oracle, and Sun
Microsystems. Web services composite application
framework ws-caf ver 1.0, 2003.
http://developers.sun.com/techtopics/
webservices/wscaf/primer.pdf.

[3] H. Attiya and J. Welch. Sequential consistency versus
linearizability. ACM Transactions on Computer
Systems, 12(2):91–122, 1994.

[4] A. Avizienis, J.-C. Laprie, B. Randell, and
C. Landwehr. Basic concepts and taxonomy of
dependable and secure computing. IEEE Transactions
on Dependable and Secure Computing, 1(1):11–33,
2004.

[5] O. Babaoglu, A. Bartoli, V. Maverick, S. Patarin,
J. Vuckovic, and H. Wu. A framework for prototyping
J2EE replication algorithms. In On the Move to
Meaningful Internet Systems 2004: CoopIS, DOA, and
ODBASE, volume 3291 of Lecture Notes in Computer
Science, pages 1413–1426. Springer, Jan. 2004.

[6] A. Bessani, J. da Silva Fraga, L. Lung, and E. A. P.
Alchieri. Active replication in CORBA: Standards,
protocols, and implementation framework. In On the
Move to Meaningful Internet Systems 2004: CoopIS,
DOA, and ODBASE, volume 3291 of Lecture Notes in
Computer Science, pages 1395–1412, Jan. 2004.

[7] S. Beyer, F. Muñoz-Escoi, and P. Galdámez. CORBA
replication support for fault-tolerance in a
partitionable distributed system. In Proceedings of the
17th Int. Workshop on Database and Expert Systems
Applications (DEXA), pages 406–412, Washington,
DC, USA, 2006. IEEE Computer Society.

[8] K. Birman. The untrustworthy web services
revolution. IEEE Computer, 39(2):98–100, 2006.

[9] N. Budhiraja, K. Marzullo, F. Schneider, and
S. Toueg. The primary-backup approach. In
S. Mullender, editor, Distributed systems, chapter 8,
pages 199–216. ACM Press, Addison-Wesley, 2nd
edition, 1993.

[10] G. Chockler, I. Keidar, and R. Vitenberg. Group
communication specifications: a comprehensive study.
ACM Computing Surveys, 33(4):427–469, 2001.

[11] F. Cristian. Understanding fault-tolerant distributed
systems. Communications of the ACM, 34(2):56–78,
1991.

[12] P. Felber and P. Narasimhan. Experiences, strategies,
and challenges in building fault-tolerant CORBA
systems. IEEE Transactions on Computers,
53(5):497–511, 2004.

[13] Gorda Consortium. D1.1 - state of the art in database
replication. Technical report, Universidade do Minho,
Braga, Portugal, 2005.

[14] M. Hayden and K. Birman. Probabilistic broadcast.
Technical report, Ithaca, NY, USA, 1996.

[15] L. Juszczyk, J. Lazowski, and S. Dustdar. Web service
discovery, replication, and synchronization in ad-hoc
networks. In Proceedings of the 1st International
Conference on Availability, Reliability and Security
(ARES’06), pages 847–854. IEEE Computer Society,
2006.

[16] D. Liang, C.-L. Fang, C. Chen, and F. Lin. Fault
tolerant web service. In Proceedings of the 10th
Asia-Pacific Software Engineering Conference, pages

310–319. IEEE Computer Society, 2003.

[17] M. Merideth, A. Iyengar, T. Mikalsen, S. Tai,
I. Rouvellou, and P. Narasimhan. Thema:
Byzantine-fault-tolerant middleware for web-service
applications. In Proceedings of the 24th Symposium on
Reliable Distributed Systems, pages 131–142. IEEE
Computer Society, 2005.

[18] L. E. Moser, P. M. Melliar-Smith, and P. Narasimhan.
Consistent object replication in the eternal system.
Theory and Practice of Object Systems, 4(2):81–92,
1998.

[19] Object Management Group (OMG). Common Object
Request Broker Architecture: Core Specification,
v3.0.3, 2004.

[20] J. Osrael, L. Froihofer, K. M. Goeschka, S. Beyer,
P. Galdamez, and F. Munoz. A system architecture
for enhanced availability of tightly coupled distributed
systems. In Proceedings of the 1st International
Conference on Availability, Reliability and Security
(ARES’06), pages 400–407. IEEE Computer Society,
2006.

[21] J. Osrael, L. Froihofer, G. Stoifl, L. Weigl, K. Zagar,
I. Habjan, and K. Goeschka. Using replication to build
highly available net applications. In Proceedings of the
17th International Workshop on Database and Expert
Systems Applications (DEXA), pages 385–389. IEEE
Computer Society, 2006.

[22] H. Reiser, M. Danel, and F. Hauck. A flexible
replication framework for scalable and reliable .net
services. In Proceedings of the IADIS International
Conference on Applied Computing, volume 1, pages
161–169, 2005.

[23] J. Salas, F. Perez-Sorrosal, M. Patiño-Mart́ınez, and
R. Jiménez-Peris. WS-Replication: a framework for
highly available web services. In Proceedings of the
15th International Conference on the World Wide
Web, pages 357–366. ACM Press, 2006.

[24] A. Schiper. Group communication: From practice to
theory. In SOFSEM 2006: Theory and Practice of
Computer Science, volume 3831 of Lecture Notes in
Computer Science, pages 117–136. Springer, 2006.

[25] F. Schneider. Replication management using the
state-machine approach. In S. Mullender, editor,
Distributed Systems, chapter 2, pages 17–26. ACM
Press, Addison-Wesley, 2nd edition, 1993.

[26] W3C. Web services description language wsdl 1.1,
2001. http://www.w3.org/TR/wsdl.html.

[27] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and
G. Alonso. Understanding replication in databases
and distributed systems. In Proceedings of the 20th
International Conference on Distributed Computing
Systems, pages 464–474. IEEE Computer Society,
2000.

[28] J. S. Y. Amir, C. Danilov. A low latency, loss tolerant
architecture and protocol for wide area group
communication. In Proceedings of the International
Conference on Dependable Systems and Networks,
pages 327–336. IEEE Computer Society, 2000.

[29] X. Ye and Y. Shen. A middleware for replicated Web
services. In Proceedings of the 3rd International
Conference on Web Services, pages 631–638. IEEE
Computer Society, 2005.

23

