
Middleware Support for Adaptive Dependability

Lorenz Froihofer, Karl M. Goeschka, and Johannes Osrael

Vienna University of Technology
Institute of Information Systems

Argentinierstrasse 8/184-1
1040 Vienna, Austria

{lorenz.froihofer|karl.goeschka|johannes.osrael}@tuwien.ac.at

Abstract. Generic middleware can often not provide satisfactory solu-
tions, but neither is it acceptable to let the application developer re-
invent the wheel each time. Therefore, middleware shall support reuse of
infrastructural services while leaving the application in control. In par-
ticular, we contribute with a middleware approach to support adaptive
dependability by balancing integrity and availability in distributed sys-
tems. To achieve this goal, we add a new middleware service for explicit
runtime management of data integrity constraints. In order to provide
the desired balancing with respect to an application’s requirements and
environment conditions, our approach supports the application developer
with explicit interaction between middleware, application, and metadata.
Based on our prototype implementation, we show how adaptive balanc-
ing of integrity and availability improves the overall dependability. The
performance impairments of our approach are typically worth their costs
in systems where the read-to-write ratio is high or write performance is
not a limiting factor.

Keywords: Middleware, dependability, adaptivity, constraint consistency,
inconsistency, replication

1 Introduction

Today’s software systems often face availability requirements of 24 hours per
day, 7 days a week. While availability close to 100% is already hard to achieve
in a healthy system, e.g., due to system maintenance operations, the situation
becomes even worse if parts of a system suffer from failures and the system there-
fore operates in a degraded mode. However, availability (the readiness for correct
service) is only one attribute of dependability [1]. Integrity, the absence of im-
proper system alterations, is another. Within our work, we focus on consistency
of data with respect to data integrity constraints, i.e., constraint consistency [2].
The constraints stem from an application’s requirements and have typically to
be satisfied in the course of business transactions. Consistency of the constraints
themselves, e.g., whether they represent conflicting requirements, is not within
the focus of our work.

Failures are threats to dependability and hence to availability and integrity.
While failures affecting availability might lead to a non-responsive system, in-
tegrity violations may lead to inconsistent data. We focus on node and link

froihofer
Textfeld
Copyright for this work was transferred to Springer. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from Springer. This is the author's version. The original publication is available at: http://www.springerlink.com/content/p530284206146530/

2

failures, assuming the crash failure model [3] for nodes—pause-crash for server
nodes—and links may fail by losing some messages but do not duplicate or cor-
rupt messages. Link failures may subsequently lead to network partitions, effec-
tively splitting a system into parts that are not able to communicate. However,
as node and link failures cannot be differentiated at the time when they occur [4],
we initially treat node failures as partitions with a single node. Whether a node
or link failed can be detected after the node is reachable again.

Replication [5], the process of maintaining several copies (replicas) of the
same entity (data item, object), is well-known to provide fault tolerance for im-
proved availability in case of node and link failures. The replication of entities,
however, introduces a new integrity criterion: replica consistency. Replica con-
sistency requires that replicas of an entity are consistent according to the used
replica consistency model, e.g., 1-copy-serializability [6] or looser consistency
models like ε-serializability [7] and eventual consistency. As replica consistency
may impair constraint consistency, it is in the focus of our work as well.

It is well known that Consistency, Availability, and Partition-tolerance (CAP)
cannot be optimized independently of each other. This interdependency is stated
more precisely in the (strong) CAP principle [8, 9] providing that only two of
the three requirements can be achieved, e.g., a system can be available and con-
sistent but not be partition-tolerant. However, the weak CAP principle specifies
that the stronger guarantees are provided for two of these properties, the weaker
guarantees can be provided for the third. Obviously, these three properties have
to be balanced according to an application’s requirements. Moreover, it would
be beneficial if the system could adapt to changing requirements during runtime,
e.g., due to node or link failures.

While in the past adaptation mechanisms were incorporated into software
on a per system basis, where they are hard to change, reuse, or analyze, the
proliferation of such systems suggests to include adaptation support into the
middleware. Thus, the adaptation mechanisms can be reused in numerous sys-
tems, analyzed separately from the system being adapted, and easily changed
to incorporate new adaptations. Moreover, they provide a natural home for en-
coding the expertise of system designers and implementers about adaptation
strategies and policies.

It is important to note that we are not aiming at transparent adaptivity:
While the initial motivation to introduce middleware stems from the goal to
re-use infrastructure code and encapsulate it behind coherent service interfaces
for the application programmer, soon transparency was introduced to conceal
the distribution of components from the user and the application programmer,
so that the system is perceived as a single coherent system rather than as a col-
lection of independent components. Different kinds of transparency have been
standardized by ISO (International Standardization Organization, ISO 10746-
1:1998, http://www.iso.org/) and ANSA (Advanced Network Systems Architec-
ture) [10] and have been in the focus of middleware research.

Unfortunately, generic transparency (if not impossible at all) often comes
at the cost of impaired performance and other quality properties. Additionally,
users or application developers sometimes require knowledge about certain dis-
tribution aspects (e.g., in the presence of certain failure scenarios). Consequently,

3

transparency in itself is not the ultimate design goal of a distributed system, but
neither is it advisable to unconditionally follow the so-called “end-to-end argu-
ment” that some properties can only reasonably be provided under consideration
of the application semantics and therefore have to be actually implemented by
the application itself. Rather should middleware support the integration of ap-
plications with configurable re-used infrastructure services.

If application requirements are available during run-time in a processable
form, they can explicitly be manipulated, configured, and processed by the ap-
plication as well as the middleware, which allows such a system to balance or
trade certain requirements against each other during run-time. By applying these
principles, the application can be left in control to avoid costly generic solutions.
In particular, we contribute with a middleware approach to support adaptive
dependability by balancing integrity and availability. In order to provide the
desired balancing with respect to an application’s requirements and environ-
ment conditions, our approach supports the application developer with explicit
management of data integrity constraints.

Paper Overview. First, Sect. 2 introduces our concept of balancing availability
and integrity before Sect. 3 describes a prototype implementation with explicit
runtime constraint consistency management. Section 4 then provides evaluation
results and corresponding conclusions. We give an insight into related work in
Sect. 5 and conclude this paper in Sect. 6.

2 Balancing Concept

For investigating the trade-off between integrity and availability, we concentrate
on data-centric systems [11], which have their focus on the (business) data, typ-
ically stored in database management systems and represented by the business
objects (entities) of an application and the relations between them. The Enter-
prise JavaBeans (EJB) platform, for example, represents such business objects
by entity beans. Furthermore, our focus is on distributed object systems where
communicating objects reside on different nodes. The main reason for having
objects distributed among nodes and not being centralized is strong ownership
of these nodes, e.g., the objects might be bound to some hardware facilities
or different administrative domains. Application data are encapsulated by ob-
jects and their relationships and are modified by (possibly nested) invocations
of methods of these objects.

One example for such an application scenario is a distributed telecommuni-
cation management system (DTMS) [12]. The DTMS is a software application
that manages voice communication systems (VCS), installed at different sites.
Each site has its own instance of a DTMS, but configuration of the VCS requires
DTMS instances of different sites to cooperate. The hardware facilities of the
VCS are represented by objects within the DTMS that are bound to the site of
the VCS for decentralized management reasons—a failure of a DTMS site should
not have effects beyond the specific site. The objects of the DTMS are subject
to integrity constraints that possibly span objects of multiple sites, e.g., the con-

4

RepairReportAlarm

affectedComponent
repairComment

alarmKind
description

context RepairReport inv ComponentKindReferenceConsistency:
alarm.alarmKind.equals("Signal") implies
 (affectedComponent.equals("Signal Controller") or
 affectedComponent.equals("Signal Cable"))

Fig. 1. Simplified ATS model with constraint

figuration parameters for a voice communication channel have to be consistent
to enable communication between different sites.

Another application scenario, where a prototype has been implemented by
an industry partner based upon our middleware, is a distributed alarm tracking
system (ATS) [13]. A simplified model of this system is given in Fig. 1 for our
studies within this paper. The simplified ATS has two objects Alarm and Repair-
Report. Alarms are managed by administrative operators while the repair reports
are filled out by technical operators. The alarmKind determines which kinds of
components might have to be repaired (affectedComponent). Hence, the system
applies certain integrity constraints between an Alarm and a RepairReport. The
example provided in Fig. 1 specifies that an alarm with alarmKind=“Signal” can
only be removed by repairing a component that is either a “Signal Controller” or
a “Signal Cable”. Administrative operators and technical operators are working
at different locations, potentially accessing different servers. If a network split
occurs between these servers, the system should still be available to all of them
and allow to make progress.

2.1 Constraints and Consistency Threats

Generally, data integrity constraints are predicates on data, evaluating to true,
if a constraint is satisfied, or false, if it is violated. In our case, constraints
are defined upon a class model, e.g., by using the Object Constraint Language
(OCL) for Unified Modeling Language (UML) class diagrams. We follow the
well-established approach to differentiate between preconditions (bound to and
checked before a specific method invocation), postconditions (bound to and
checked after a method invocation), and invariant constraints (bound to a certain
class—the context class) [14]. For invariant constraints, we further differentiate
between hard (checked at the end of an operation during a transaction) and soft
constraints (checked at the end of a transaction) [15]. Invariant constraints are
defined solely on the state of objects (static constraints) and hence can be vali-
dated at any time. Dynamic constraints defined on state transitions, sequences
or temporal predicates are not in the primary focus of our work.

While pre- and postconditions are explicitly bound to methods and hence
have to be triggered before or after method invocations, invariants are bound to
a certain class and the triggering methods for validation of invariants have to
be specified. Triggering constraint validation of invariant constraints upon each
call to a method of the context class or only upon each call to a public method
of the context class are two possible options. However, invariant constraints
have at least to be checked whenever a method that potentially might lead to a
constraint violation—an affected method of the constraint—was called.

Although an invariant constraint is defined for a certain context class, affected
methods might belong to other classes as well. For our example in Fig. 1, the

5

constraint ComponentKindReferenceConsistency has to be checked whenever the
alarmKind of an Alarm or the componentKind of a RepairReport is changed. Con-
sequently, Alarm.setAlarmKind(. . .) and RepairReport.setComponentKind(. . .) are
affected methods of the constraint ComponentKindReferenceConsistency
while the constraint itself is an affected constraint of these methods with two
affected objects, an Alarm object and a RepairReport object. Obviously, the af-
fected methods of a constraint cannot generically be determined without further
knowledge of the constraint. Moreover, checking the ComponentKindReference-
Consistency constraint if only the description of an alarm is changed (caused by
following the “trigger constraint at all public method invocations” paradigm)
unnecessarily impairs performance. Due to these reasons, we only trigger con-
straint checking for affected methods specified by the application developer.

In a distributed system, where objects are located at different nodes, con-
straint validation is affected by node and link failures as some affected objects
might not be available. If the objects are replicated, we might be able to val-
idate the constraints (partially based on backup copies). However, if updates
on replicas are allowed in different partitions, we cannot be sure whether the
validation is reliable, because backup replicas of affected objects might be stale
due to an update in another partition. For example, if the technical operator
of an ATS application sets componentKind in a RepairReport while the system
operates in degraded mode. The administrative operator might have changed
the corresponding Alarm in the meantime in another partition. Consequently,
the constraint validation performed because of the changed RepairReport is not
fully reliable. Hence, we call such a situation a consistency threat [2].

2.2 Availability Improvements and Reconciliation

Systems with a strict consistency model require to block or abort operations if
a consistency threat occurs. However, some constraints might not be critical for
“sufficiently” correct system operation and can temporarily be relaxed (traded).
The application developer decides which constraints are tradeable and specifies
the according metadata about the constraint. During runtime, the middleware
is responsible to appropriately trigger constraint validation.

Whenever a consistency threat is detected and the corresponding constraints
are tradeable, the middleware triggers the negotiation process to decide whether
to accept or not accept the current consistency threat. Negotiation can either be
performed descriptively, e.g., accept the threat if no affected objects are older
than n seconds, or algorithmically via an application callback. In an algorithmic
negotiation process, the application may associate application-specific informa-
tion with accepted threats. Whether a threat is accepted can be decided by the
callback handle provided by the application developer on its own, or it might
even contact the end user for a threat-specific decision. However, if the threat
is not accepted, the current transaction is aborted. If the consistency threat is
accepted, the middleware stores this threat (including the application data) to
be re-evaluated at a later time when node or link failures are repaired.

After two partitions are reunified (node or link failure repaired), our sys-
tem starts the reconciliation phase. First of all, the replication protocol starts

6

to propagate updates performed in one partition to the replicas in the other
partition(s). If replica (write-write) conflicts are detected, conflict resolution can
either be performed generically, e.g., by performing a rollback to previous states,
or application-specific, e.g., through an application callback by the replication
protocol. However, replica conflicts are also provided to the constraint consis-
tency component in order to support re-establishment of constraint consistency.

After replica consistency is re-established, constraint consistency has to be
restored (constraints are defined upon objects and not between replicas of a sin-
gle object). For this purpose, the stored consistency threats are re-evaluated.
If re-evaluation is successful, i.e., the corresponding constraint is satisfied, no
inconsistency was actually introduced by the consistency threat—if not, ap-
propriate actions have to be taken. Such actions, again, can be generic (e.g.,
roll-back) or application-specific (e.g., call-back) including compensation. One
further generic option is to validate constraints based on different selections of
replicas for objects with replica conflicts detected during replica reconciliation. If
any of these combinations satisfies the constraint, the solution can automatically
be established or be presented to the application for confirmation.

2.3 Relationship to the Concept of Transactions

Traditional systems apply ACID (Atomicity, Consistency, Isolation, Durability)
transactions [16], requiring that all four properties are met. Replication (“R”)
can synchronously be bound to transactions. However, in case of node or link
failures, synchronous update propagation would block. Consequently, update
propagation can be relaxed to asynchronous behavior, e.g., synchronous per net-
work partition, to avoid blocking. Moreover, if constraints cannot be checked
(unreachable objects) or cannot reliably be checked (stale backup copies in-
volved), constraint consistency (the “C”) needs to be relaxed, too. Interestingly,
Coulouris et al. [17] do not include consistency in their list of transaction proper-
ties and rather specify that the “C” is under the responsibility of the application
developer.

Atomicity (“A”) is not relaxed in principle in our approach, although one
business transaction (completed as a single transaction in a healthy system)
may result in two or more transactions (one in degraded mode and one or
more transactions to resolve conflicts during reconciliation). These considera-
tions rather correspond to the concepts of atomic transactions [18] vs. business
activities [19] in the area of Web services (WS). However, in our approach we did
not follow these ideas and consequently bound atomicity, isolation, and durabil-
ity strictly to transactions. Consequently, replication and constraint consistency
management operate then on top of such “AID” transactions, see Fig. 2.

A I D
C R

A Atomicity
C Constraint consistency
I Isolation (concurrency consistency)
D Durability
R Replication

A C I D

R

Fig. 2. Trading transactional properties for adaptive dependability

7

3 Middleware Support

These concepts for adaptive dependability have been integrated into a platform
independent system architecture [20], which has been implemented in different
prototypes using several technologies (EJB, CORBA, .NET). Within this sec-
tion, we first provide how our general concepts and the general architecture were
mapped to and integrated into the EJB middleware platform as provided by the
JBoss application server (AS). Second, we contribute with a detailed description
of constraint consistency management as a new middleware service.

3.1 System Architecture

Two components of our architecture are primarily responsible for the balancing
of availability and integrity, the replication support (RS) and the constraint con-
sistency manager (CCMgr) provided within the grey areas of Fig. 3. Other im-
portant components are the invocation service, used for interception of point-to-
point invocations, the transaction manager, managing distributed transactions,
persistence to store application data, information about consistency threats, and
historical replica versions to allow for rollback during reconciliation, the group
membership service to detect node and link failures, and the group communica-
tion component that is used for update propagation (from primaries to backups)
by the replication support. The naming service, allowing for name to object bind-
ings, and the activation service, responsible for appropriate activation of objects,
are not of immediate interest within our platform.

(a) System components (b) Component usages

Fig. 3. EJB/JBoss AS specific system architecture

8

Although quite common and concise, the layered representation in Fig. 3(a)
is not sufficient to illustrate how the components cooperate by using each other:
First, strict layering is often not possible and second, layering does not imply
actual usage. Therefore, Fig. 3(b) further provides an overview of usage-relations
between the major components. This part of the figure shows that transaction
management and invocation service are the two central services where almost
all of the other services depend upon.

3.2 Constraint Consistency Management

Explicit runtime constraint consistency management is a new middleware ser-
vice we introduced for balancing integrity and availability. In our approach,
constraints are explicitly available during run-time and validated upon request
of the middleware. The specification/implementation of constraints is up to the
application developer as they result from the application requirements. On the
other hand, triggering the validation of constraints as well as detection and man-
agement of consistency threats is performed by the middleware.

Explicit (Runtime) Constraint Representation. Obviously, constraints
are processed by the middleware (management, triggering validation, etc.) as
well as the application (performing the actual validation). Hence, this concept
needs a contract between the two parties. For this purpose, we encapsulate the
integrity constraints within explicit constraint classes similar to Verheecke et
al. [21]. The primary contract between middleware and application is the Con-
straint.validate(ctx : ConstraintValidationContext) method (Fig. 4) that has to be
implemented by the application developer and provides true or false as return
value or throws an exception to indicate that constraint checking is impossible,
e.g., due to unreachable objects. The middleware’s responsibility is to ensure that
validate(. . .) is called appropriately. Moreover, the beforeMethodInvocation(. . .)
call to a constraint supports postconditions that check whether state transitions
caused by a method call are correct. Within this call, a postcondition might store
some values (state before the method invocation) and check during the call to
validate(. . .) whether the method invocation actually produced a correct result
with respect to the state before the method invocation.

The content of the ConstraintValidationContext provided to validate(. . .) de-
pends on the type of a constraint and the circumstances under which the con-
straint is validated. It generally contains:

– The context object for invariant constraints, i.e., their “starting point” for
constraint validation. Starting from this object, the constraint is able to reach
all objects that are needed for validation of the constraint. For example, the
context object for the OCL expression context Person inv: getAge() >= 18
would be an instance of the context class Person.

– The called object, called method, and method arguments for preconditions.
– The called object, method, method arguments, and result for postconditions.

9

Constraint

name : String
type : ConstraintType
priority : ConstraintPriority
minSatisfactionDegree :

SatisfactionDegree
description : String
isContextObjectNeeded : boolean+beforeMethodInvocation(

ctx : ConstraintValidationContext)
+isTradeable() : boolean
+validate (

ctx : ConstraintValidationContext)
: boolean {exceptions =
ConstraintUncheckableException}

ObjectClass

name : String
implementInterfaces
 : List<ObjectClass>

FreshnessCriterion

maxAge : long
*

class
Context

0..1
*

SomeOtherConstraint

constraintParameter

ObjectMethod

name : String
parameterTypes
 : List<ObjectClass>

1

*

SomeConstraint

+validate(ctx : ConstraintValidationContext) :
boolean

+validate(ctx : ConstraintValidationContext) :
boolean

freshness
Criteria

isInterface() : boolean
getClass(o : Object)

: ObjectClass

1

* 1..*
affectedConstraints affectedMethods

<<interface>>
VersionedEntity

getVersion() : long
getEstimatedLatest

Version() : long

declaring
Class

return
Type

0..1

<<interface>>
ConstraintValidationContext

getCalledObject() : Object
getContextObject() : Object
getMethod() : ObjectMethod
getMethodArguments() : Object[]
getMethodResult() : Object

Fig. 4. Constraint runtime model

To allow the middleware to trigger constraint validation appropriately, the
affected methods have to be specified in addition to the constraints. Moreover,
the context class can be specified for invariant constraints. Some invariant con-
straints, however, may not need a context object as they, for example, use a
query operation to get their affected objects.

Finally, constraints may have associated freshness criteria (maximum age),
one per affected class of objects (ObjectClass). These classes have to implement
the VersionedEntity interface that allows to retrieve the version of the object
getVersion() and the estimated latest version getEstimatedLatestVersion(). The
estimated latest version is the one that the object would expect to have. For
example, if an object is usually updated every n seconds and the last update
producing version v happened 3n seconds ago, getVersion() would return v while
getEstimatedLatestVersion() would return v + 3, indicating that the object most
probably missed 3 updates. This mechanism can be used by the application
developer to specify conditions for the negotiation of consistency threats.

Constraint Configuration and Registration. To allow appropriate valida-
tion, we need to know which constraints are affected by which method invoca-
tions. As motivated in Sect. 2.1, we require the application developer to declare
constraints and affected methods as well as other details about a constraint,
e.g., the constraint type or freshness criteria, in a configuration file. Similar to
the EJB deployment descriptor, the constraint configuration file is read after
deployment of an EJB application. The information contained in this file is then
used to register the constraints within a constraint repository. This constraint
repository allows to look up constraints, e.g., by class, method, or constraint
type. Listing 1.1 provides an example of a constraint specification within the
configuration file.

10

Listing 1.1. Constraint configuration example
<c on s t r a i n t name=“ComponentKindReferenceConsistency”

type=“HARD” p r i o r i t y=“RELAXABLE” contextObject=“Y”
minSat i s f ac t i onDegree=“UNCHECKABLE”>
<c l a s s>ComponentKindReferenceConstraint</ c l a s s>
<context−c l a s s>RepairReport</ context−c l a s s>
<a f f e c t ed−methods><a f f e c t ed−method>

<context−preparat ion>
<preparat ion−c l a s s>Cal ledObject IsContextObject</ preparat ion−c l a s s>

</ context−preparat ion>
<objectMethod name=“setAffectedComponent”>

<ob j e c tC la s s>RepairReport</ ob j e c tC l a s s>
<arguments><argument>java . lang . S t r ing</argument></arguments>

</objectMethod>
</ a f f e c t ed−method><a f f e c t ed−method>

<context−preparat ion>
<preparat ion−c l a s s>ReferenceIsContextObject</ preparat ion−c l a s s>
<params><param name=“ge t t e r ” value=“getRepairReport”/></params>

</ context−preparat ion>
<objectMethod name=“setAlarmKind”>

<ob j e c tC la s s>Alarm</ ob j e c tC l a s s>
<arguments><argument>java . lang . S t r ing</argument></arguments>

</objectMethod>
</ a f f e c t ed−method></ a f f e c t ed−methods>

</ con s t r a i n t>

The constraint ComponentKindReferenceConsistency implements the integrity
constraint of the ATS application provided in Fig. 1. It is a hard constraint,
specifies that the constraint implementation requires a context object, it can be
relaxed during degraded mode, and the negotiation process will accept any con-
sistency threats (minSatisfactionDegree=“uncheckable”)—if no negotiation call-
back handle is registered by the application to be dynamically contacted for a
threat-specific decision. A consistency threat occurs whenever the satisfaction
degree of a constraint is possibly satisfied or possibly violated (constraint valida-
tion based on possibly stale objects) or uncheckable (e.g., due to unreachable
objects). Considering constraint violations the least acceptable situation and
satisfied constraints the desired case, we apply the following ordering of satis-
faction degrees: violated < uncheckable < possibly violated < possibly satisfied <
satisfied.

The <class> element specifies the Java implementation class of the constraint
that will be instantiated while the configuration file is read during the deploy-
ment of an EJB application. The <context-class> is the class of the context
object (RepairReport) required for constraint validation. Within the <affected-
methods> element, affected methods of the constraint are provided. Each af-
fected method is specified by stating the declaring class, the method name, and
the method parameters. As the constraint is implemented for a specific context
class, the ConstraintValidationContext (see Fig. 4) must be initialized appropri-
ately. Values such as called object, called method, and method parameters are
already set by the middleware. However, the <preparation-class> is responsible
to extract the context object based on these values. The context object for the
method RepairReport.setAffectedComponent(. . .) is the called object itself while
the context object for the method Alarm.setAlarmKind(. . .) is obtained by calling
getRepairReport() upon the called object (an instance of Alarm).

11

Constraint Consistency Manager. The CCMgr is notified by the invocation
service before and after method invocations. Upon such notifications, the CCMgr
looks up preconditions, postconditions, hard and soft invariant constraints and
triggers validation according to their constraint type. To allow such behavior of
the CCMgr it is also registered with the transaction manager (TxMgr) as a trans-
actional resource to take part in the two-phase commit. If any constraints are
violated, the CCMgr sets the state of the current transaction to “rollback-only”.
Hence, any constraint violation (or unacceptable consistency threat) prevents an
ongoing transaction from successful commit.

In degraded system mode, the CCMgr provides additional functionality to
support the integrity/availability balancing by interacting with the replication
support in order to detect consistency threats caused by possibly stale objects.
Typically, in order to provide replication transparency, respectively application
independence from a particular replication protocol, a proxy object serves as
interface between the application and the replication protocol. For the appli-
cation, this proxy object provides a local view onto the logical object based
on the reachable replicas. In our case, this object view becomes possibly stale
if updates on the same logical object can occur in another network partition.
Whether or not an object1 is possibly stale depends on the presence of node or
link failures and the underlying replication protocol. For example, in the pri-
mary partition protocol [22], each object accessed in a non-primary partition is
possibly stale. In the case of the primary-per-partition protocol [23], objects are
possibly stale in every network partition. However, before the CCMgr triggers
the validation of a constraint, it starts to gather accessed objects, see Fig. 5.
After the constraint validation returns, the CCMgr asks the replication manager
whether any of these objects are possibly stale. If this is the case, the validation
result (satisfaction degree) of the constraint is changed from satisfied to possi-
bly satisfied, or from violated to possibly violated, as the constraint validation is
not fully reliable. If there were any unreachable objects, the validation result of
the constraint is uncheckable. These situations indicate a consistency threat and
trigger negotiation of the threat.

To perform algorithmic negotiation, the application must register a negoti-
ation callback handler with the CCMgr. Such a negotiation handler is bound
to the current transaction and responsible to decide whether to accept or not
accept arising consistency threats. If no negotiation handler is registered at the
CCMgr, declarative negotiation is performed based on the current satisfaction
degree, the configured minimum satisfaction degree, and—if applicable—given
freshness criteria. For this process, the current satisfaction degree of the con-
straint is compared with the minimum satisfaction degree. Moreover, the differ-
ence getEstimatedLatestVersion() - getVersion() is compared with the maximum
age defined by available freshness criteria. Both, minimum satisfaction degree
and optional freshness criteria are specified in the constraint configuration file.

Not accepting a consistency threat results in rollback of the current trans-
action. If a consistency threat is accepted, the consistency threat as well as

1 For simplification, we use the term “object” as synonym for the local object view
onto the logical object.

12

Gather affected objectsConstraint validation

[Consistency threat
present]

Remember consistency threat

Threat negotiation

[No consistency threat]

Start constraint
validation

[Threat
accepted]

[Threat not
accepted]

Validation result Affected objects

Continue operation

Abort operation

Middleware

Application

[Constraint
violated]

[Constraint
satisfied]

Fig. 5. Detection and negotiation of consistency threats

application-specific information associated with the threat is persisted and used
later during the constraint reconciliation phase. Reconciliation of constraint con-
sistency is performed after reconciliation of replica consistency. Consequently,
the CCMgr only starts its work after having received a notification from the
replication manager that it has finished its reconciliation work.

To reconcile constraint consistency, the constraint consistency manager looks
up accepted consistency threats and re-evaluates the corresponding constraints.
If a constraint is satisfied, no inconsistency was introduced during degraded
mode and the data about the consistency threat are removed. If a constraint is
still threatened (node or link failures affecting the constraint are still present),
re-evaluation of the corresponding threat is postponed until further repair. If a
constraint is violated, an inconsistency was introduced during degraded mode
and appropriate actions have to be taken to satisfy the constraint.

Invocation Interception. A key requirement for middleware integration of
constraint consistency management is the possibility to intercept invocations.
In EJB, each component and hence entity bean must provide a home and a
business interface. These interfaces are implemented by the EJB container (a
JBoss proxy in our case). After a call to the interface implementation, the EJB
container can perform several middleware tasks, e.g., association of a security
context or transaction with the call, before it finally forwards the call to the
bean implementation.

In the case of JBoss, the JBoss proxy builds up an object representing the
invocation and passes this object through an interceptor chain where each inter-
ceptor invokes the next interceptor until the final interceptor invokes the bean
instance. The result of the invocation is passed back in the reverse order. The
interceptors are responsible to provide middleware services for the invocation—
enhanced by constraint consistency management and replication in our case.
Fortunately, the invocation interceptors of the chain can be specified in a con-
figuration file of the JBoss AS and therefore enhancing JBoss with additional
functionality is rather easy to achieve. Consequently, it was only necessary to

13

<<interface>>
IEntityBean1

EntityBean1Impl

JBoss-Proxy

1. Initial call

2. Pass invocation through
the interceptor chain to

trigger middleware services

3. Call to the actual
implementation

4. Internal call within
the same entity bean

instance is not
intercepted

Fig. 6. JBoss invocation interception

implement a new interceptor and put it into the interceptor chain. This intercep-
tor is then responsible for appropriately including the CCMgr within the process
of an invocation. The implementation of the replication protocol is based on the
ADAPT replication framework [24], which also hooks into JBoss through custom
interceptors.

Unfortunately, the interceptor chain is only traversed if the invocation comes
from a call to the interface which is passed through the interceptor chain by the
JBoss proxy (EJB container). If the bean instance calls another method on itself,
this (internal) invocation is not intercepted, e.g., call number four in Fig. 6.
This behavior would prevent any affected constraints of internal invocations
from being checked. This issue can be solved by using the JBoss aspect-oriented
programming (AOP) framework with which plain Java method invocations can
be intercepted. Similarly to the approach above, the AOP framework transforms
invocations into explicit invocation objects and calls interceptors registered with
the AOP framework. Hence, we are able to use the same approach as above for
triggering constraint validations for internal invocations as well.

3.3 Replication Support

To maximize availability for systems capable of applying our concept of adap-
tive dependability, the middleware should provide replication support. Within
our prototype, we implemented the primary-per-partition protocol (P4) [23] to
replicate the state of entity beans. The P4 behaves like a traditional primary-
backup replication protocol in a healthy system with the specific setup that each
object might have its primary on a different node instead of using only a single
designated primary server node. However, during degraded mode, a temporary
primary is chosen per partition. This further increases availability because op-
erations can be performed on objects in different partitions as long as only
non-critical constraints are affected. During repair, detected conflicts are solved
either by rollback to previous states or by an application-specific compensation
callback—potentially even involving a system operator.

However, the reconciliation process of the replication protocol has an in-
fluence on the handling of constraints and consistency threats. Consequently,
constraints are further divided in intra- and inter-object constraints to address
this fact. Intra-object constraints are constraints that can be evaluated on a
single object and require access to the (primitive/value) attributes of the object
only. Inter-object constraints need access to more than a single object.

14

If the replica reconciliation process resolves replica conflicts (replicas of a
single logical object were written in different partitions) through selection of
one copy (and not by creating a new state for the object by merging values of
disjoint sets of attributes of the different replicas), a differentiation of integrity
constraints into intra- vs. inter-object constraints is useful. In this case, intra-
object constraints will not be violated retrospectively by the replica reconcilia-
tion process. Therefore, constraint validations based upon possibly stale objects
can still return satisfied or violated instead of possibly satisfied or possibly violated
for intra-object constraints. This reduces the number of consistency threats and
hence the amount of associated information gathered during degraded mode and
required to be processed in the constraint reconciliation phase. Inter-object con-
straints could be further classified into intra-class (all objects of the same class,
e.g., uniqueness of an attribute for all objects of a class) and inter-class (objects
of different classes, e.g., Fig. 1) constraints. Although this differentiation is useful
for constraint implementation, it is not significant with respect to our balancing
of dependability.

4 Evaluation

For our performance measurements, we used a mixture of different computers,
each between 2–3 GHz and 1 GB of RAM, connected via 100 MBit Ethernet net-
work links. The configuration denoted as “No DeDiSys” is a standard JBoss AS
4.0.4 with JBoss TS 4.2.1b1 as transaction service for distributed transactions
and MySQL 5.0.21 for persistent storage. The “DeDiSys” configuration addi-
tionally applies the principles provided within this paper as well as the P4 repli-
cation protocol and is measured in healthy mode as well as degraded mode. In
order to ensure repeatability of the tests, we used the script-based DedisysTest
application described in [13].

The test case performed for measurement started with the creation of 1000
entity beans. Afterwards, a setter for String attributes of these entity beans
was called 1000 times followed by 1000 calls getter methods of String attributes
and 1000 calls to an empty method without associated constraints. The next
steps only applicable to the DeDiSys configurations were 1000 calls to an empty
method with a satisfied constraint and 1000 calls to an empty method with
violated constraints. Constraint satisfaction or violation was achieved by simply
returning true or false within the Constraint.validate(. . .) method in order to
eliminate the validation overhead for reasonable overhead comparison. Details
on this issue are available in [25]. To measure the behaviour in degraded mode
when consistency threats occur, we called an empty method with an associated
constraint 1000 times. The occurring consistency threats were negotiated with a
dynamic negotiation handler and persisted afterwards. Finally, the 1000 entity
beans created in the first step were deleted. Obviously, the create and delete case
operate on 1000 different objects. The “accepted threat” case is the primary issue
to investigate for the degraded mode and therefore split into a good case and bad
case scenario. The values for the other operations were obtained by taking the
average of 1000 operations on the same object and 1000 operations on different
objects, i.e., one operation per object.

15

Figure 7 provides an overview of the performance of three different system
configurations. “No DeDiSys” is performed on a single node (the fastest one),
“No DeDiSys (average of 3 nodes)” is the average of the single-node performance
of the three nodes taking part in the replicated setting, and the two DeDiSys
configurations (healthy and degraded mode) use a setting with three replicated
nodes. One drawback of the DeDiSys configurations is that creation, change,
and deletion of entity beans is slower than the “No DeDiSys” setting. There are
two main reasons for this performance loss. First, the replicated setting has to
store data about the replicas of entity beans, e.g., JNDI name and primary key
to identify the corresponding entity bean and the (serialized) request used to
create the entity bean (required to create backup replicas). Second, propagating
the update messages from the primary copies to the backup copies requires
network access in contrast to the single-node “No DeDiSys” setting. Although
an efficient implementation of the P4 protocol was not in our primary focus, the
provided figures give a rough estimation of the expected performance loss due
to fault- and partition-tolerant replication.

0

50

100

150

200

250

Create

Setter (a
vg.)

Getter (a
vg.)

Empty (avg.)

Satisfied (avg.)

Violated (avg.)

Accepted threat (1
)

Accepted threat (1
000)

Delete

No DeDiSys (single node)
No DeDiSys (average of 3 nodes)
DeDiSys healthy (3 nodes)
DeDiSys degraded (3 nodes in partition)

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

Fig. 7. No DeDiSys vs. DeDiSys in healthy and degraded mode

Moreover, we observe that operation in degraded mode is slightly slower
for write operations than operation in healthy mode. This is primarily caused
by keeping a history of states per replica (requires database access). However,
this comparison serves only to show the overhead of degraded mode compared
to healthy mode if the number of nodes is equal. In practice, such a situation
can not occur as at least a single node will not be reachable and therefore the
number of nodes in degraded mode is at least one less than in healthy mode.
Consequently, the degraded mode might be even faster than the healthy mode
for operations triggering the replication protocol. Whether this is true for a
certain application further depends on the configuration of constraints and hence
the number of consistency threats produced during degraded mode as the data
about consistency threats have to be replicated, too. On the other hand, read
performance decreases with a reduced number of nodes in a partition.

The case where methods without associated constraints were called shows
the interception overhead introduced by our middleware enhancement as well
as the ADAPT replication framework [24]. This is on the one hand the time
required by the constraint consistency manager, e.g., accessing the constraint
repository to search for affected constraints, and on the other hand running

16

through the replication component that does not replicate if the called method
is not a setter changing the state of an entity bean. In this case, the performance
drops to about 73% of the “No DeDiSys” configuration, which we consider quite
a good achievement as 22% of the 27% loss are caused by the ADAPT replica-
tion framework [24]. Consequently, the overhead introduced by our middleware
enhancement for empty operations is about 5%.

Handling of satisfied and violated constraints only occurs in the DeDiSys con-
figurations as this is a new middleware service added by our prototype. Although
there are some minor differences between satisfied and violated constraints in
certain scenarios, they show the same performance in average for the healthy as
well as the degraded mode.

The “accepted threats” case for operation in degraded mode primarily shows
the overhead introduced by consistency threat negotiation as well as persistence
and replication of consistency threats in addition to the time required to handle
satisfied constraints. In order to investigate a good case and a bad case sce-
nario, we performed 1000 operations on a single object producing 1000 identical
consistency threats2 on the one hand and 1000 operations producing 1000 differ-
ent consistency threats on the other hand. Of course, depending on the system
configuration, even more than 1000 threats would be possible. The good case sce-
nario shows the advantage of storing identical threats only once. Consequently,
only a single threat has to be stored in this case and we could serve 74 business
operations per second. On the other hand, the bad case scenario requires replica-
tion and persistence of 1000 different consistency threats, which is a rather costly
operation. In this case, we could only serve three business operations per second.
Obviously, this case heavily depends on the specific application. However, the
operation in degraded mode shows the greatest benefit of our approach compared
to traditional systems that either block, i.e., are unavailable, or operate in an
uncontrolled inconsistent way—thereby impairing dependability in one or the
other way.

Although the contribution of this paper is not focused on an efficient imple-
mentation of the P4 replication protocol, the effects of introducing replication
are of course an interesting aspect to investigate. Our implementation of the
P4 protocol uses synchronous update propagation from the primary to all cur-
rently reachable nodes. While this slows down updates (create, setter, delete),
the performance of read operations is enhanced as reads can be performed on
any node.

Figure 8 shows that the performance of one node using DeDiSys (and hence
the P4 replication protocol) drops to 71% for entity bean deletion, 43% for entity
bean creation, and 57% for local writes. This primarily shows the overhead of the
ADAPT replication framework and the replication protocol through database
accesses to persist details about entity bean replicas. Adding a second DeDiSys-
node further reduces update performance to 28% (delete), 15% (create), and
22% (writes) compared to the “No DeDiSys” case. This shows a little bit less
than 50% performance of the single DeDiSys node case, caused by the fact that

2 Two consistency threats are identical if they refer to the same constraint and—if
applicable—to the same context object.

17

0

50

100

150

200

250

300

350

No
DeDiSys

1 Node 2 Nodes 3 Nodes 4 Nodes

Create
Setter (avg.)
Getter (avg.)
Empty (avg.)
Delete
Multicast + Tx handling

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

DeDiSys

Fig. 8. Replication effects on different operations

the primary first executes the update and afterwards propagates the updates
synchronously to the backups. Even though the backup nodes process the update
messages from the primary in parallel, adding additional nodes decreases update
performance slightly further.

On the other hand, read performance is increased by roughly 50% of the
single node per additional node, starting from 78% of the “No DeDiSys” case
for the single node scenario and reaching 227% in the four node replicated setting.
Empty methods operate at a rather constant ratio independent of the number
of nodes in the system. The reason for this is that they do not trigger update
propagation on the one hand. On the other hand, as these methods do not adhere
to any naming convention, we consider them as write operations—to be on the
safe side—and therefore execute them only on the primary node. This behaviour
is the same as for the test cases with satisfied and violated constraints. However,
the backup nodes show no CPU load for non-update operations and hence can
serve further client requests.

In order to investigate the theoretical maximum of (update) operations pos-
sible per second due to restrictions of group communication and transaction
handling, we started a transaction, sent 1000 ping messages from the primary to
the backups, associated the transaction context at the backups, responded with
a pong message to the primary and finally committed the transaction. This is
the “Multicast + Tx handling” case in Fig. 8. Obviously, the round-trip time of
multicasts and transaction handling become more and more influential with an
increased number of nodes, limiting the possibilities for performance improve-
ments.

We conclude that only under extremely demanding performance require-
ments the performance impairment due to explicit constraint management may
turn out to be a problem, see also [2, 25] for further details. On the other hand,
synchronous replication significantly reduces system performance for update op-
erations while the performance of read operations is improved. Therefore, syn-
chronous replication should be applied if the read to write ratio is high and/or
write performance is not the limiting factor. In other cases, asynchronous repli-
cation protocols or only partial replication (updates are only propagated to some
but not all nodes within the system) should be applied.

18

5 Related Work

The balancing of integrity and availability has already been investigated with
respect to isolation [26, 27] and replica consistency [28, 7, 29] and different strate-
gies to optimistic replication are already well-known [30]. The focus of our work
to trade constraint consistency for availability did not yet receive too much
attention. Balzer [31] uses pollution markers to temporarily allow and denote
constraint violations in a healthy system to allow certain business cases. The
application using this approach tolerates inconsistency in the way that reports
are marked appropriately if they contain data affected by pollution markers. Al-
though our stored consistency threats roughly correspond to pollution markers,
Balzer accepts constraint violations in a healthy system and does not consider
node or link failures while we aim at fully consistent data in the healthy system
and accept consistency threats during degraded mode. However, integration of
both approaches would most likely provide further benefits to an application
developer.

Representing data integrity constraints as explicit constraint classes was in-
spired by Verheecke et al. [21] who perform a transformation from UML class
diagrams enhanced with OCL constraints into Java objects and Java constraint
checking classes. Their approach generates skeletons for the classes with hard-
wired triggers for constraint validation while we require that constraints are
explicitly manageable at runtime for adaptivity with respect to node and link
failures. However, the specification of affected methods of a constraint, is a rather
tedious task. To relieve the application developer from this work as well as from
the implementation of the constraints themselves, the model driven approach
used by Verheecke et al. could be integrated with our constraint checking frame-
work. Consequently, entity beans, constraints and metadata could be generated
based on UML models annotated with OCL constraints.

ADAPT [24] provides a replication framework to allow rapid prototyping of
replication protocols in J2EE (Java 2 Enterprise Edition) environments. This
framework is based upon the JBoss AS. The primary mechanism used is invoca-
tion interception at the client side as well as at the server side. The replication
protocol building upon this framework is notified about different events, such as
creation of, calls to, and deletion of enterprise beans. Consequently, this frame-
work proved quite useful for our prototype implementation of the P4 replication
protocol.

6 Summary and Conclusion

This paper presents a middleware approach to support adaptive dependabil-
ity by balancing integrity and availability. We show how explicit runtime man-
agement of constraints as a middleware service can support the application to
provide the envisaged balancing with respect to an application’s requirements
and environment conditions. This concept allows detection and negotiation of
consistency threats as a means to bound the potentially introduced inconsis-
tency during degraded mode. According to our prototype implementation and

19

additional evaluation studies [2, 25], performance impairment due to explicit
constraint consistency management is not an issue while the performance loss
through synchronous replication is acceptable if (i) the read-to-write ratio is
high, (ii) the number of replicated nodes within the system is small, and/or
(iii) write performance is not a limiting factor. However, our approach increases
availability at the expense of increased aggregate complexity during system rec-
onciliation. Therefore, this system mode is subject to improvements and future
research questions.

Acknowledgments

We thank Hubert Künig for many in-depth discussions, Markus Horehled and Klaus
Fuchshofer who contributed major parts of the proof-of-concept EJB prototype im-
plementation integrated into the JBoss application server, and Dominik Ertl who was
strongly involved in the performance tests. We further thank the anonymous review-
ers for their useful comments. This work has been partially funded by the European
Community under the FP6 IST project DeDiSys (Dependable Distributed Systems,
contract 004152, http://www.dedisys.org/).

References

1. Avižienis, A., Laprie, J.C., Randell, B., Landwehr, C.E.: Basic concepts and taxon-
omy of dependable and secure computing. IEEE Trans. Dependable Sec. Comput.
1(1) (2004) 11–33

2. Froihofer, L., Osrael, J., Goeschka, K.M.: Decoupling constraint validation from
business activities to improve dependability in distributed object systems. In: Proc.
2nd Int. Conf. on Availability, Reliability and Security, Los Alamitos, CA, USA,
IEEE Computer Society (2007) 443–450

3. Cristian, F.: Understanding fault-tolerant distributed systems. Communications
of the ACM 34(2) (1991) 56–78

4. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2) (1985) 374–382

5. Helal, A.A., Heddaya, A.A., Bhargava, B.B.: Replication Techniques in Distributed
Systems. Kluwer Academic Publishers (1996)

6. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery
in Database Systems. Addison-Wesley (1987)

7. Pu, C., Leff, A.: Replica control in distributed systems: an asynchronous approach.
In: SIGMOD ’91: Proceedings of the 1991 ACM SIGMOD international conference
on Management of data, New York, NY, USA, ACM Press (1991) 377–386

8. Fox, A., Brewer, E.A.: Harvest, yield and scalable tolerant systems. In: Workshop
on Hot Topics in Operating Systems. (1999) 174–178

9. Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent, avail-
able, partition-tolerant web services. SIGACT News 33(2) (2002) 51–59

10. Architecture Projects Management: The advanced network systems architec-
ture (ANSA) reference manual (1989) http://www.ansa.co.uk/ANSATech/89/
ANSAREF/.

11. Osrael, J., Froihofer, L., Kuenig, H., Goeschka, K.M.: Scenarios for increasing
availability by relaxing data integrity. In Cunningham, P., Cunningham, M., eds.:
Innovation and the Knowledge Economy - Issues, Applications, Case Studies. Vol-
ume 2., IOS Press (2005) 1396–1403

20

12. Smeikal, R., Goeschka, K.M.: Fault-tolerance in a distributed management system:
a case study. In: ICSE ’03: Proceedings of the 25th International Conference on
Software Engineering, Washington, DC, USA, IEEE Computer Society (2003) 478–
483

13. Künig (ed.), H.: FTNS/EJB system design & first prototype & test report. Tech-
nical Report D3.2.2, DeDiSys Consortium (2007) http://www.dedisys.org/.

14. Meyer, B.: Applying “design by contract”. Computer 25(10) (1992) 40–51
15. Jagadish, H.V., Qian, X.: Integrity maintenance in object-oriented databases. In:

Proceedings of the 18th International Conference on Very Large Data Bases, Mor-
gan Kaufmann Publishers Inc. (1992) 469–480

16. Haerder, T., Reuter, A.: Principles of transaction-oriented database recovery. ACM
Comput. Surv. 15(4) (1983) 287–317

17. Coulouris, G., Dollimore, J., Kindberg, T.: Distributed Systems - Concepts and
Design. fourth edn. Addison-Wesley (2005)

18. Arjuna, BEA, Hitachi, IBM, IONA, Microsoft: Web services atomic transaction
(2005) http://www-128.ibm.com/developerworks/library/specification/ws-tx/.

19. Arjuna, BEA, Hitachi, IBM, IONA, Microsoft: Web services business activity
framework (2005) http://specs.xmlsoap.org/ws/2004/10/wsba/.

20. Osrael, J., Froihofer, L., Goeschka, K.M., Beyer, S., Galdámez, P., Muñoz Escoi,
F.D.: A system architecture for enhanced availability of tightly coupled distributed
systems. In: Proceedings of the 1st International Conference on Availability, Reli-
ability and Security, IEEE Computer Society (April 2006)

21. Verheecke, B., Straeten, R.V.D.: Specifying and implementing the operational use
of constraints in object-oriented applications. In: Proceedings of the Fortieth In-
ternational Conference on Tools Pacific, Australian Computer Society, Inc. (2002)
23–32

22. Ricciardi, A., Schiper, A., Birman, K.: Understanding partitions and the “non
partition” assumption. In: IEEE Proc. of Fourth Workshop on Future Trends of
Distributed Systems. (1993)

23. Beyer, S., Bañuls, M.C., Galdámez, P., Osrael, J., Muñoz Escoi, F.: Increasing
availability in a replicated partitionable distributed object system. In: The 2006
International Symposium on Parallel and Distributed Processing and Applications
(ISPA 2006), Springer (December 2006)

24. Babaoglu, Ö., Bartoli, A., Maverick, V., Patarin, S., Vuckovic, J., Wu, H.: A
framework for prototyping J2EE replication algorithms. In Meersman, R., Tari,
Z., eds.: CoopIS/DOA/ODBASE (2). Volume 3291 of Lecture Notes in Computer
Science., Springer (2004) 1413–1426

25. Froihofer, L., Glos, G., Osrael, J., Goeschka, K.M.: Overview and evaluation of
constraint validation approaches in Java. In: ICSE ’07: Proceedings of the 29th
International Conference on Software Engineering. (2007) 313–322

26. Berenson, H., Bernstein, P., Gray, J., Melton, J., O’Neil, E., O’Neil, P.: A critique
of ANSI SQL isolation levels. SIGMOD Rec. 24(2) (1995) 1–10

27. Herlihy, M., Wing, J.: Linearizability: a correctness condition for concurrent ob-
jects. ACM Trans. Program. Lang. Syst. 12(3) (1990) 463–492

28. Davidson, S.B., Garcia-Molina, H., Skeen, D.: Consistency in a partitioned net-
work: a survey. ACM Comput. Surv. 17(3) (1985) 341–370

29. Yu, H., Vahdat, A.: Design and evaluation of a conit-based continuous consistency
model for replicated services. ACM Trans. Comput. Syst. 20(3) (2002) 239–282

30. Saito, Y., Shapiro, M.: Optimistic replication. ACM Comput. Surv. 37(1) (2005)
42–81

31. Balzer, R.: Tolerating inconsistency. In: Proceedings of the 13th international
conference on Software engineering, IEEE Computer Society Press (1991) 158–165

