©2007 IEEE. Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creating
new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
This is the author's version. The original publication is available at: http://
doi.ieeecomputersociety.org/10.1109/ARES.2007.64

Decoupling Constraint Validation from Business Activities to Improve
Dependability in Distributed Object Systems

Lorenz Froihofer, Johannes Osrael, and Karl M. Goeschka
Vienna University of Technology
Institute of Information Systems
Argentinierstrasse 8/184-1
1040 Vienna, Austria
{lorenz. froihofer|johannes.osrael|karl.goeschka} @ tuwien.ac.at

Abstract

Integrity constraints are an important means to discover
and specify application requirements. Although they are ex-
plicitly available and discussed during the system analysis
and design phases, the constraint validation functionality is
generally still tangled with other implementation code, e.g.,
the business logic, in today’s systems. We contribute with
an approach to decouple the integrity constraints from the
business logic as well as the setpoints of constraint valida-
tion from the business activities. This allows us to balance
dependability with respect to node and link failures by tem-
porarily relaxing constraint consistency. Our prototype im-
plementation indicates that this approach is typically worth
its effort in systems where availability is of higher priority
than strict consistency and a roll-forward approach to sys-
tem repair, e.g., through compensating actions, is preferred
over generic rollback-based solutions.

1 Introduction

Application requirements are often analyzed in terms of
use cases, classes/entities, sequence diagrams—and con-
straints. In this analysis phase, the requirements and con-
straints are explicitly available, e.g., by stating “The sys-
tem must not sell more tickets than available seats for an
event.” The constraints of an application are still explicitly
available in the design of a system. For example, nowa-
days it is common practise to design systems by using the
Unified Modelling Language (UML). UML includes an ex-
plicit language for specifying constraints, the Object Con-
straint Language (OCL). OCL can be used to explicitly de-
fine constraints upon a UML class model—in addition to
constraints, such as cardinality or XOR, that can already be

tickets « « tickets
1 1

Person Event

name : String place : String

seats : int

OCL Constraint: sellTickets(p : Persion,
context Event ’ ticketCount : int) : Tickets[]

inv: tickets->size() <= seats

Figure 1. Design-phase constraint example

specified in the graphical notation of UML. Figure 1 pro-
vides an example for the previous constraint.

Unfortunately, these constraints are often intertwined
with business code during implementation. Listing 1 pro-
vides such an example. However, depending on how the
system is implemented, there could be several other places
of where to perform the constraint validation. Obviously,
ensuring that specific constraints were correctly imple-
mented in a system might become a tedious task and might
lead to inconsistencies between system requirements, de-
sign, and implementation.

Meyer [15] already proposes the “design by contract”
principle where constraints are made explicit through so
called contracts. Contracts can be expressed as precon-
ditions and postconditions for methods and invariant con-
straints for classes. This already improves the traceability
of constraints within the implementation code. However,
the constraints are intertwined with business functionality
during compile time and no longer explicitly available (and
manageable) during runtime.

In distributed object systems, constraint or contract en-
forcement becomes more complex as node and link fail-
ures affect the constraint validation process. For exam-

froihofer
Textfeld
©2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
This is the author's version. The original publication is available at: http://doi.ieeecomputersociety.org/10.1109/ARES.2007.64

Listing 1. Constraint implementation
public class Event {

public Ticket[] sellTickets (Person p,
int ticketCount) {

if (getSeats () >=
getSoldTickets (). count()+ticketCount) {
// Sell ticket

}

else {
// Do not sell

}

ticket

}
}

ple, if nodes are unreachable, some constraints might not
be checkable due to unavailable objects. Systems requir-
ing strict consistency will have to block in such situations.
However, for mission or safety-critical applications, avail-
ability might be more important than strict consistency as
blocking the system due to partial failures might lead to
disadvantageous if not catastrophic consequences. On the
other hand, introducing inconsistencies to the system must
be performed in a controllable way. Relaxing consistency
to improve availability can benefit from integrity constraints
that are explicitly available and manageable during runtime.
This approach allows for constraint validation at any time or
adapting to changing consistency requirements. Within this
paper we discuss how explicit runtime constraints as first
class citizens within a distributed object system can be used
to balance dependability [1] with respect to node and link
failures.

Paper overview. Section 2 provides an introduction into
target systems, applications, and failure model. Section 3
introduces our constraint model and the notion of a consis-
tency threat. In Section 4 we discuss how the decoupling
of constraint validation can be used to improve dependabil-
ity. The consequences of our trading—the reconciliation of
possible inconsistencies—is discussed in Section 5. Sec-
tion 6 shortly introduces the prototype implementation and
provides results and lessons learned from it. We give an
overview of related work in Section 7 and provide our con-
clusions in Section 8.

2 System model and applications

Within this work, we focus on the class of tightly-
coupled data-centric distributed object systems. Our sys-
tem model has three major states (Figure 2). In a healthy
system, no failures or inconsistencies are present. In de-
graded mode, while node/link failures are present, incon-
sistencies are potentially introduced. These inconsistencies
are cleaned up in the reconciliation phase after node or link
failures were repaired. To limit the degree of inconsistency

Node/link
failure repaired

Recovering/Reconciling
system

Degraded system

(allow inconsistencies up

to a certain degree) (re-establish full consistency)

Full consistency
re-established

Figure 2. Major system states

Healthy system

Node/link failure
(fully consistent)

introduced in degraded system periods, we require that soft-
ware manages constraints explicitly during runtime. For
this purpose, we also need metadata about constraints, e.g.,
whether a constraint must never be violated or might poten-
tially be violated in degraded mode. Given this input, our
middleware afterwards provides the support for runtime-
management of constraint consistency in each of the three
major system states.

These system states are primarily defined with respect
to node and link failures. Failures are threats to depend-
ability [1] and affect its attributes—availability, the readi-
ness for correct service, and integrity, the absence of im-
proper system alterations, in our case. While failures af-
fecting availability might lead to a non-responsive system,
integrity violations may lead to inconsistent data. Within
our work, we consider node and link failures, assuming the
crash failure model [7] for nodes—pause-crash for server
nodes—and links may fail by losing some messages but do
not duplicate or corrupt messages. However, as node and
link failures cannot be differentiated at the time when they
occur [9], we initially treat node failures as partitions with
only a single node. Whether a node or link failed will be
detected at the time the node is reachable again.

Replication [11], the process of maintaining multiple
copies of the same entity (data item, object), is well-known
to provide fault tolerance for improved availability in case
of node and link failures. The primary partition proto-
col [19], for example, allows a single partition (the pri-
mary partition) to continue “normal” operation while other
partitions are blocked or operate in read-only mode. Such
an approach prevents replica conflicts as (write) operations
are only allowed in the primary partition. To further in-
crease availability, write access in other partitions would
be desirable—at the price of replica inconsistency. Replica
consistency is only one correctness criterion for data in-
tegrity. In total, we distinguish three different kinds of con-
sistency with respect to data integrity [21]:

e Concurrency consistency (isolation): defines the cor-
rectness of data with respect to concurrent, interleav-
ing access to single data items, typically in the context
of (even distributed) transactions.

e Replica consistency: defines the correct effect of oper-
ations on different replicas (copies) of a single “logi-

cal” entity with respect to a particular replica consis-
tency model (e.g., 1-copy-serializability [4]). Replica
inconsistency is caused by staleness, e.g., if the backup
copies differ from the primary copy in a primary-
backup replication protocol [6]. Isolation of concur-
rent access to different replicas of the same logical en-
tity is also achieved by replica control (in cooperation
with the isolation mentioned above).

e Constraint consistency: defines the correctness of data
with respect to data integrity constraints that stem from
the application requirements. This is the kind of con-
sistency we focus on within this paper.

An application example for such a system scenario
is a distributed telecommunication management system
(DTMS) [20]. A DTMS manages a voice communication
system (VCS), e.g., it establishes communication channels
between partners. In this system, distributed objects are
bound to physical hardware facilities but are replicated to
other nodes to prepare for degraded system periods. The
reason is that, for example, the parameterization of a com-
munication channel requires data of objects located at dif-
ferent nodes. For correct parameterization, the objects have
to be consistent with respect to certain integrity constraints.

3 Constraints and consistency threats

The “design by contract” principle as well as the Object
Constraint Language (OCL) of UML, provide the basis for
our first classification of constraints: preconditions, post-
conditions and invariant constraints. Preconditions have to
be validated before the call to a method, postconditions have
to be satisfied after the call to a method returns. Invariant
constraints are defined solely on the state of objects (static
constraints) and hence can be validated at any time. Dy-
namic constraints defined on state transitions, sequences
or temporal predicates are not in the primary focus of our
work.

We distinguish between transactional and non-
transactional applications to decide when to trigger
validation of invariant constraints. For non-transactional
applications, an invariant constraint must be checked
immediately after the call to a method which might change
the state constrained by this specific invariant—an affected
constraint of the method. Vice versa, the method is an
affected method of the constraint. All objects restricted by
a certain constraint are affected objects of the constraint.
The validation of a constraint requires access to all af-
fected objects. For transactional applications, we further
differentiate between hard and soft constraints [13]. Hard
constraints are validated like postconditions immediately
after the call to an affected method. All affected soft
constraints of a transaction are validated at the end of the
transaction.

In order to use constraints as a flexible means to limit the
degree of inconsistency potentially introduced during de-
graded system periods, we classify constraints into trade-
able and non-tradeable. Non-tradeable constraints are criti-
cal for correct operation of the system and must never be vi-
olated. Tradeable constraints must be satisfied in a healthy
system—during degraded mode, however, they might tem-
porarily be relaxed in order to increase availability. The
decision of whether a constraint is tradeable has to be pro-
vided by the application developer according to an applica-
tion’s requirements. This classification between tradeable
and non-tradeable constraints is mainly useful for invariant
constraints, because constraint validation can be performed
at any time and hence be decoupled from business activ-
ities. Therefore, invariant constraints can be used for re-
establishing constraint consistency during system reconcil-
iation. Pre- and postconditions can be traded as well. If
necessary at all, the effects of such trading have to be com-
pensated by invariant constraints as pre- and postconditions
cannot be re-evaluated in the reconciliation phase.

3.1 Constraint runtime representation

A data integrity constraint is generally a predicate on
the system state and can either be satisfied or violated.
Similar to [23], we implement data integrity constraints
by constraint validation classes where one class represents
exactly one integrity constraint. Each class provides a
validate (...) method which is called to validate the
constraint. Constraints are defined within the context of a
class for invariants (the context class of the constraint) or
the context of a method for pre- and postconditions. To val-
idate invariant constraints, an instance of the context class
(the context object) is provided as parameter to the vali-
date method of the constraint. Certain invariant constraints
might not even need a context object because they obtain
the objects needed for validation through a query operation.
For pre- and postconditions, we provide the called method
arguments in addition to the context object as parameter to
the validate method of a constraint. For postconditions, we
further provide the result of the method invocation.

3.2 The notion of a consistency threat

In a distributed system, the validation of integrity con-
straints is more complex as constraint validation itself be-
comes subject to node and link failures. Consequently, there
are three different categories of constraint checks:

e Full Constraint Check (FCC): Constraint checking is
possible without restrictions. All affected objects are
up-to-date.

o Limited Constraint Check (LCC): Constraint checking
is possible but some affected objects are possibly stale.

For example, in the case of a primary-backup proto-
col only a backup replica is reachable that might have
missed updates performed on the primary copy since
the partitioning occurred.

e No Constraint Check (NCC): Constraint validation is
impossible due to the unavailability of at least one af-
fected object (no replicas accessible).

A consistency threat occurs whenever we can only per-
form an LCC or cannot validate a constraint at all (NCC).
Of course, in a system that does not use replication to pro-
vide fault tolerance, LCCs are not possible due to the lack
of redundancy.

Figure 3 provides an example for a consistency threat as-
suming a primary-backup replication protocol where write-
access is only allowed on the primary copy in any case.
Constraint C1 affects objects Ol and O2. The system suf-
fers from a link failure splitting the four computers in two
partitions, each containing two computers. In partition A,
we can validate C1 based upon the primary copy of Ol and
the backup copy of O2. As the backup copy of O2 is possi-
bly stale, we can only perform an LCC for C1 which results
in a consistency threat. The situation in partition B is sim-
ilar for O2 with a backup of Ol. Differently, a constraint
validated on O1 and O3 in partition A could be validated
without restrictions (FCC).

Constraint C1 needs access to O1
and O2 for validation. \

Partiton A .2~

Validation of C1 based upon possibly stale (or
unavailable) replicas results into a consistency threat.

Figure 3. Consistency threats

Combining the previously defined constraint checks with
the general definition of a constraint to be either satis-
fied or violated provides three additional constraint valida-
tion results (satisfaction degrees), identifying a consistency
threat: possibly_satisfied and possibly_violated in case of an
LCC—uncheckable in the case of NCC. However, differen-
tiation between these three results is only useful if combined
with further application-specific knowledge. For the exam-
ple in Figure 1, we would accept possibly_satisfied, mean-
ing that we potentially sell more tickets than available seats
while possibly_violated indicates that we would already sell
more tickets than available. This differentiation is based on
the assumption that tickets are mainly sold and rarely re-
turned.

However, this enhanced set of possible validation results
for a single constraint requires a specification of how the
validation results of a set of constraints are combined into
a single validation result for the whole set. Obviously, the
overall outcome should be a consistency threat if at least one
constraint validation provides a consistency threat. There-
fore, the overall outcome is:

e Satisfied: if all constraints in the set are satisfied.

e Possibly satisfied: if all constraints are either satisfied
or possibly satisfied and at least one constraint is pos-
sibly satisfied.

e Possibly violated: if all constraints are either satisfied,
possibly satisfied, or possibly violated and at least one
constraint is possibly violated.

e Uncheckable: if at least one constraint is uncheckable
and none is violated.

e Violated: if at least one constraint is violated.

Determining possibly stale objects. Typically, in order
to provide replication transparency, respectively application
independence from a particular replication protocol, a proxy
object serves as interface between the application and the
replication protocol. For the application, this proxy object
provides a local view onto the logical object based on the
reachable replicas. In our case, this object view becomes
possibly stale if updates on the same logical object can oc-
cur in another network partition. Whether or not an ob-
ject! is possibly stale depends on the presence of node/link-
failures and the underlying replication protocol. For exam-
ple, in the primary partition protocol [19], each object ac-
cessed in a non-primary partition is possibly stale. In the
case of the primary-per-partition protocol [5], objects are
possibly stale in every network partition.

4 Balancing integrity and availability

Building upon explicit constraint management, con-
straint classifications and a validation result that takes sys-
tem degradation into account enables us to explicitly bal-
ance integrity and availability during degraded system peri-
ods. For this balancing, we decouple constraint validation
from the current business activity in the time dimension by
postponing reliable constraint validation until we can per-
form an FCC for the threatened constraints of the current
business activity. Obviously, to which extent integrity can
be traded for availability depends on a particular applica-
tion.

The application-specific trade-off is configured through
the specification of tradeable and non-tradeable constraints.

!For simplification, we use the term “object” as synonym for the local
object view onto the logical object

Consistency threats for non-tradeable constraints are auto-
matically rejected with the usual effect that the current oper-
ation/transaction is aborted. Consistency threats for trade-
able constraints are subject to a negotiation mechanism to
decide whether to accept or reject the consistency threat.
The negotiation mechanism will base its decision on param-
eters such as the constraint satisfaction degree and/or the
affected objects. However, if the consistency threat is ac-
cepted, the system stores this threat and allows to associate
some information with this threat such as affected objects
or application specific data.

If in the worst case all constraints are non-tradeable and
all objects of the application are covered by at least one
constraint, the application completely blocks during de-
graded system periods—a fallback to conventional system
behaviour. Whether the system blocks for write-operations
only or for read- and write-operations depends on the con-
figuration of constraints, affected methods, and the applied
replication protocol.

4.1 Negotiation of consistency threats

For negotiation of whether or not to accept consistency
threats, we differentiate between two kinds:

Static (descriptive) negotiation: is configured based on
the satisfaction degree of a constraint and optionally some
freshness criteria for possibly stale affected objects. For
example, the consistency threat of a specific constraint
might be acceptable if the satisfaction degree is “possi-
bly_satisfied” and the last update of the affected objects is
not older than n seconds. However, additional parameters
could be considered as well.

Dynamic (algorithmic) negotiation: is performed by us-
ing an application implemented callback handle—the Ne-
gotiationHandler. A NegotiationHandler can be registered
with a transaction of the application to associate the nego-
tiation mechanism with a specific use case. This kind of
negotiation can be performed with or without user interven-
tion.

The priority of the different negotiation mechanisms is
set to prefer a dynamic negotiation handler over static nego-
tiation decisions over a default application wide minimum
constraint satisfaction degree. A general overview of the
negotiation process is provided in Figure 4.

4.2 Preparation for reconciliation

Whenever we accept a consistency threat, we have to
store some information about the consistency threat to be
able to evaluate during reconciliation time whether or not
we have actually introduced an inconsistency into the sys-
tem. For re-evaluation, we have to store at least the unique
name identifying the constraint that produced the consis-
tency threat. Moreover, depending on the “starting point”
of constraint validation, we have to differentiate two cases:

. Obijects for constraint
Consistency threat)
check and optional

(yes/no) freshness information

—) e

Negotiation of
consistency threat

[Threat rejected‘/ N:aat accepted]

Continue operation,
Abort operation store
consistency threat

Constraint and
validation result

Figure 4. Overview of the negotiation process

1. Validation of the constraint starts from a context ob-
ject. In this case we have to store at least an identifier
for the context object which is later used as input to the
constraint validation method.

2. Validation of the constraint starts from a set of objects,
obtained by a query operation. In this case, the con-
straint needs no input to the validate method. Hence,
no further information is required in addition to the
unique name of a constraint.

The previous requirements only state the minimum in-
formation necessary to re-evaluate accepted consistency
threats during the reconciliation process. This information
can be further enriched by storing identifiers or even the se-
rialized state of affected objects at the time the consistency
threat occurred. Moreover, we allow the application to as-
sociate application specific data with a consistency threat.
Finally, the application can also give reconciliation instruc-
tions such as to allow rollbacks to be performed during rec-
onciliation.

On the other hand, stored information can be reduced, if
rollback/undo operations to intermediate states are not re-
quired in which case identical consistency threats need to
be stored only once. Two consistency threats are identical if
both of them refer to the same integrity constraint and—if
applicable—to the same context object.

5 Reconciling constraint consistency

So far we considered operation in a healthy system and
during degraded mode. After network links are repaired or
nodes recovered, we have to re-evaluate accepted consis-
tency threats. For this process, we perform a re-validation
of associated constraints. Depending on the result of the
constraint validation, we take different actions:

Constraint is satisfied. If (i) there was no replica conflict
(or no replication is used), remove the threat and all identi-
cal threats from the set of accepted consistency threats. If
(ii) there was a replica conflict for the constraint and a rec-
onciliation instruction of at least one of the identical threats

specifies that the application should be informed of this sit-
uation, notify the application.

Constraint is violated. If the accepted consistency threat
has an associated reconciliation instruction specifying that
rollback/undo is allowed, re-evaluation can be performed
based on available (serialized) historical states. If a consis-
tent state is found, the state of the affected objects is rolled
back. Unfortunately, availability of the system is retrospec-
tively reduced as some updates do not become effective.
Even more so, as recovery may suffer from the “domino
effect” [18], the advantage of our approach may become
completely diminished. If no consistent state is found at all,
a callback handler provided by the application is invoked to
solve the constraint violation.

If rollback/undo is not allowed, the system has to recon-
cile by using a compensation approach, e.g., similar to the
WS-Business Activity standard. For this process, the appli-
cation provided callback handler is invoked to reconcile the
constraint violation. In this scenario, our approach provides
the greatest benefit, because the overhead to store the threat
information is minimal.

As an alternative to solving the violation, the system
could deactivate violated constraints in order to reach the
healthy state, thereby relaxing consistency. Similar to intro-
ducing new integrity constraints to the system, constraints
that were disabled and are enabled again have to be checked
for all context objects. This, however, is a different kind of
decoupling constraints, we do not focus on.

Constraint is threatened. If the constraint is still threat-
ened in the reconciliation phase, at least one affected object
is still not fully available. Hence, although some network
partitions might have been re-unified, some partitions still
exist and the system operates in degraded mode. In this
case, re-evaluation of the constraint has to be postponed un-
til further partitions are re-unified.

Parallel reconciliation and business operations. During
reconciliation, it is not feasible to block the system for busi-
ness operations until the whole reconciliation process is fin-
ished. Business operations that partially involve still threat-
ened objects can either block, if the reconciliation is already
underway or be treated as if the partition were still in place,
thereby introducing new threats. Additionally, business op-
erations can also be used to remove existing consistency
threats for constraints that are satisfied by the current opera-
tion. In parallel, business operations with only unthreatened
objects can continue in healthy mode.

6 Results and lessons learned from prototype

We integrated these concepts into a system architec-
ture for tightly-coupled data-centric systems where man-

agement of explicit constraints is one essential part of the
overall architecture [16]. This management of explicit con-
straints is performed by the Constraint Consistency Man-
ager (CCMgr), which triggers the validation of constraints
and the negotiation of consistency threats and drives the rec-
onciliation of accepted consistency threats.

To allow such behavior, the CCMgr is notified before
and after method invocations. Constraints affected by these
method invocations are looked up from the constraint repos-
itory that stores the constraints of an application and allows
to find constraints by different criteria, such as the class of
an object, the called method, or the constraint type (pre-,
postcondition, invariant hard, or invariant soft). Validation
of affected constraints is triggered by the CCMgr according
to the constraint type. Depending on the outcome, appropri-
ate actions are taken by the CCMgr (e.g., abort the current
transaction in case of constraint violations).

Furthermore, we mapped the system architecture onto
the Enterprise JavaBeans (EJB) platform and integrated
our prototype implementation into the JBoss application
server [10, 14]. To investigate the overhead for different
operations, we created, changed, called empty methods, and
deleted EJB entity beans. The prototype implementation in-
dicates that explicit runtime management of constraints is a
feasible approach, causing almost negligible performance
loss between 1-10% as shown in Figure 5. Consequently,
only in case of extremely demanding performance require-
ments, explicit runtime management of constraints might
become too costly.

Operations per second

250
200
150 -
100 +
50

Create Setter Empty Delete

O With explicit constraint consistency management
B Without explicit constraint consistency management

Figure 5. Performance overhead caused by
explicit constraint consistency management

On the other hand, adding the implementation of the P4
replication protocol reduces performance (depending on the
number of nodes and the performed operation) of the system
to about 8-33% of the values without constraint consistency
management in Figure 5 for update operations and about
72% for local reads. As reads are always performed locally,
the replication protocol of course increases the total number
of reads that can be processed throughout the system—the
benefit gained for the reduced update performance.

However, it is important to consider the amount of data
gathered during degraded mode and to be processed dur-
ing system reconciliation. For example, keeping a his-
tory of states/operations of the degraded period only makes
sense, if reconciliation through rollback to previous states
is actually acceptable. Similar considerations apply to
whether identical consistency threats should be stored once
or more than once. The more data are gathered during
degraded mode, the more data needs to be processed in
degraded mode—e.g., processing of already existing con-
sistency threats and linking them to identical additional
threats—as well as during reconciliation, where the recon-
ciliation process might try a rollback to previous states. Ob-
viously, the time taken for such automatic rollback-based
reconciliation grows with the history of previous states/op-
erations. Therefore, reconciliation should focus on reaching
a consistent state through a roll-forward approach by per-
forming compensating actions to remove inconsistencies.

To evaluate the costs of decoupled constraint validation
for improved dependability, we performed several opera-
tions in degraded mode, resulting in 200 identical consis-
tency threats or 1000 consistency threats if identical threats
are stored more than once. A single threat initially requires
at least three objects to be persistently stored in the database
and two further objects per additional identical threat. After
the network partition is reunified, the replication protocol
starts to propagate missed updates—including consistency
threats. Replica conflicts are provided to the constraint con-
sistency manager to support constraint reconciliation. After
the replica reconciliation phase finished, the CCMgr starts
to re-evaluate the accepted consistency threats, which are all
actually satisfied in our case to evaluate the best case. The
worst case situation cannot be reasonably be evaluated as it
might involve user interaction to clean up inconsistencies—
possibly being performed only days after the network parti-
tion.

Figure 6 shows the time required for system reconcilia-
tion. As expected, the reconciliation phase becomes slower
with an increased number of updates performed and threats
occurred during degraded mode. While the number of up-
dates was the same in both cases, the threats were stored ac-
cording to the “identical threats only once” policy one time
and another time with the “store all occurred threats” policy
another time. Obviously, replica reconciliation scales worse
with an increased number of identical threats than constraint
reconciliation as it cannot benefit from identifying identi-
cal threats. On the other hand, re-evaluation of identical
threats has to be performed only once (the validation result
for identical threats is the same) and if the constraint is sat-
isfied, all threats can be deleted. Constraint reconciliation
can only benefit from multiple threats if a constraint viola-
tion is detected, which has to be subsequently resolved.

Simulation studies [22] have shown that our approach
combined with the primary-per-partition protocol (P4) [5]
can be used to increase availability in the presence of net-

Time required for reconciliation

Minutes

ON B~ O
!

Constraint
reconciliation

Replica reconciliation

‘EI Identical threats once B Full threat history ‘

Figure 6. Propagation of missed updates and
re-evaluation of consistency threats

work partitions. However, the effort required for reconcili-
ation due to continuing operation in different partitions dur-
ing degraded mode is most probably only worth its costs in
the case of longer lasting partitions for systems where the
read-to-write ratio is high. Based on our experience with
the prototype implementation, using a generic history-based
rollback approach for consistency reconciliation tends to
become a complex and processing intensive task. For ex-
ample, trying several to all possible combinations of histor-
ical object states from different partitions is costly—even
more so if the system recovers/reconciles from a longer last-
ing partition. Therefore, the reconciliation phase should fo-
cus on re-establishment of consistency through application-
specific compensating actions instead of generic rollback.

7 Related work

Balancing integrity with availability has already been
thoroughly investigated with respect to concurrency consis-
tency [3, 12] and replica consistency [8, 17, 24]. The trade-
off between constraint consistency and availability, how-
ever, is still rather poorly researched. Balzer [2] allows con-
straint violations temporarily to allow certain business oper-
ations to be split into separate steps. This approach uses pol-
lution markers corresponding to integrity constraints. If an
integrity constraint is not satisfied, the corresponding pol-
lution marker is set. The pollution marker is removed at
the time the integrity constraint is satisfied again. The sys-
tem tolerates inconsistent data in the way that report genera-
tors use the pollution markers to subsequently mark reports
that are affected by inconsistent data. Although the storage
of consistency threats roughly corresponds to the pollution
markers, Balzer accepts constraint violations in a healthy
system and is not concerned about degraded mode due to
node or link failures. On the other hand, we are aiming at
fully consistent data during healthy system periods and only
trade consistency threats (not violations) during degraded
periods to increase availability. However, combining these
two approaches would most likely provide further benefits.

8 Conclusion

In this paper, we showed how decoupled constraint val-
idation can be used to balance the two dependability at-
tributes integrity and availability. Such behavior allows to
adapt to node and link failures and hence to improve the
overall dependability of a system. Our approach allows de-
coupling of threatened constraints by postponing reliable
validation to the reconciliation phase. This, however, comes
at the price of increased complexity: Consistency threats
that result in constraint violations during reconciliation have
to be cleaned up at a point in time where the causing busi-
ness activity is usually already finished.

Generic rollback-based reconciliation solutions require
a lot of data to be gathered during degraded mode, e.g.,
the history of applied operations/states, which requires even
more processing during reconciliation phase. Moreover,
generic rollback (after the corresponding business activity
is already finished) often does not lead to satisfactory solu-
tions from the perspectives of the application developer and
the end user. Therefore, our approach should primarily be
applied to systems with a high read-to-write ratio that are
able to reconcile the system state without requiring a full
history of the degraded mode and allow for flexible applica-
tion and/or user interaction to clean up the system.

Acknowledgments

This work has been partially funded by the European Commu-
nity under the FP6 IST project DeDiSys (Dependable Distributed
Systems, contract 004152, http://www.dedisys.org/).

References

[1] A. AviZienis, J.-C. Laprie, B. Randell, and C. E. Landwehr.
Basic concepts and taxonomy of dependable and secure com-
puting. IEEE Trans. Dependable Sec. Comput., 1(1):11-33,

2004.
[2] R. Balzer. Tolerating inconsistency. In Proceedings of

the 13th international conference on Software engineering,

pages 158-165. IEEE Computer Society Press, 1991.
[3] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and

P. O’Neil. A critique of ANSI SQL isolation levels. SIG-

MOD Rec., 24(2):1-10, 1995.
[4] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concur-

rency Control and Recovery in Database Systems. Addison-

Wesley, 1987.
[5] S. Beyer, M.-C. Baiiuls, P. Galddmez, J. Osrael, and

F. Mufioz Escoi. Increasing availability in a replicated parti-
tionable distributed object system. In The 2006 International
Symposium on Parallel and Distributed Processing and Ap-

plications (ISPA 2006). Springer, December 2006.
[6] N. Budhiraja, K. Marzullo, F. Schneider, and S. Toueg. The

primary-backup approach. In S. Mullender, editor, Dis-
tributed systems, chapter 8, pages 199-216. ACM Press,
Addison-Wesley, Wokingham, United Kingdom, 2nd edi-
tion, 1993. ISBN 0-201-62427-3.

(7]
(8]

(9]

(10]

(11]

(12]

[13]

[14]

[15]
[16]

(171

(18]
(19]

(20]

[21]

(22]

(23]

(24]

F. Cristian. Understanding fault-tolerant distributed systems.

Communications of the ACM, 34(2):56-78, 1991.
S. B. Davidson, H. Garcia-Molina, and D. Skeen. Consis-

tency in a partitioned network: a survey. ACM Comput. Surv.,
17(3):341-370, 1985.

M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility
of distributed consensus with one faulty process. J. ACM,
32(2):374-382, 1985.

L. Froihofer, J. Osrael, and K. M. Goeschka. Trading in-
tegrity for availability by means of explicit runtime con-
straints. In Proc. of the 30th Intl. Conf. on Computer Soft-

ware and Applications, volume 2, pages 14—17, 2006.
A. A. Helal, A. A. Heddaya, and B. B. Bhargava. Replica-

tion Techniques in Distributed Systems. Kluwer Academic

Publishers, 1996.
M. Herlihy and J. Wing. Linearizability: a correctness con-

dition for concurrent objects. ACM Trans. Program. Lang.

Syst., 12(3):463-492, 1990.
H. V. Jagadish and X. Qian. Integrity maintenance in object-

oriented databases. In Proceedings of the 18th International
Conference on Very Large Data Bases, pages 469-480. Mor-

gan Kaufmann Publishers Inc., 1992.
H. Kuenig (ed.). FTNS/EJB system design & first prototype

& test report. Technical Report D3.2.1, DeDiSys Consortium
(www.dedisys.org), 2006.

B. Meyer. Applying “design by contract”. Computer,
25(10):40-51, 1992.
J. Osrael, L. Froihofer, K. M. Goeschka, S. Beyer,

P. Galddmez, and F. D. Mufioz Escoi. A system architec-
ture for enhanced availability of tightly coupled distributed
systems. In Proceedings of the 1st International Conference
on Availability, Reliability and Security. IEEE Computer So-
ciety, April 2006.

C. Pu and A. Leff. Replica control in distributed systems:
an asynchronous approach. In SIGMOD ’91: Proceedings of
the 1991 ACM SIGMOD international conference on Man-
agement of data, pages 377-386, New York, NY, USA, 1991.

ACM Press.
B. Randell. System structure for software fault tolerance.

IEEE Trans. on Softw. Eng., SE-1(2):220-232, June 1975.
A. Ricciardi, A. Schiper, and K. Birman. Understanding par-

titions and the “non partition” assumption. In /EEE Proc. of
Fourth Workshop on Future Trends of Distributed Systems,

1993.
R. Smeikal and K. M. Goeschka. Fault-tolerance in a dis-

tributed management system: a case study. In ICSE ’'03:
Proceedings of the 25th International Conference on Soft-
ware Engineering, pages 478-483, Washington, DC, USA,

2003. IEEE Computer Society.
R. Smeikal and K. M. Goeschka. Trading constraint consis-

tency for availability of replicated objects. In Proceedings of
the 16th IASTED International Conference on Parallel and

Distributed Computing and Systems, 2004.
D. Szentivdnyi (ed.). Metrics. Technical Report D1.3.1,

DeDiSys Consortium (www.dedisys.org), 2005.
B. Verheecke and R. V. D. Straeten. Specifying and imple-

menting the operational use of constraints in object-oriented
applications. In Proceedings of the Fortieth International
Conference on Tools Pacific, pages 23-32. Australian Com-

puter Society, Inc., 2002.
H. Yu and A. Vahdat. Design and evaluation of a conit-based

continuous consistency model for replicated services. ACM
Trans. Comput. Syst., 20(3):239-282, 2002.

