
Middleware/Application Interactions
to Support Adaptive Dependability

Lorenz Froihofer, Johannes Osrael, Karl M. Goeschka
Vienna University of Technology
Institute of Information Systems

Argentinierstrasse 8/184-1
1040 Vienna, Austria

{lorenz.froihofer|johannes.osrael|karl.goeschka}@tuwien.ac.at

ABSTRACT
Today’s software systems often face complex, challenging,
and even contradicting requirements that cannot be jointly
optimized. In order to achieve satisfying results, the sys-
tems have to adapt to changes of context and user needs
during runtime. While such adaptivity can be supported by
middleware, it typically requires interaction with the spe-
cific application to achieve this task. Well-known principles
such as callback functions are straightforward to implement
in, e.g., distributed object systems, but they are harder to
achieve if the end user in front of a Web browser should be
involved. Our contribution in this paper is twofold. First, we
introduce to our concept of adaptive dependability and pro-
vide a solution for the issue of callbacks in Web applications.
Second, we contribute with a discussion and summary of sev-
eral middleware/application interactions (MAI) we applied
within our prototype implementations in several industrial
settings. Thereby we prove our approach and show how sev-
eral kinds of MAI mechanisms have to be combined in order
to achieve the desired adaptivity. The experienced increase
in complexity will have to be addressed by better integration
and coordination of different mechanisms.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Fault Tolerance, Relia-
bility, Availability, and Serviceability; H.3.5 [Information
Storage and Retrieval]: Online Information Services—
web-based services; H.3.4 [Information Storage and Re-
trieval]: Systems and Software—distributed systems

General Terms
DESIGN, RELIABILITY

Keywords
Dependability, middleware/application interaction, Web, in-
tegrity, availability, constraint consistency, replication

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MAI ’07, March 20, 2007 Lisbon, Portugal
Copyright 2007 ACM 978-1-59593-696-7/07/0003 ...$5.00.

1. INTRODUCTION
Software systems become more and more complex, inte-

grated, and face challenging if not even contradictory re-
quirements. For example, it is well known that Consistency,
Availability, and Partition-tolerance (CAP) cannot be opti-
mized independently of each other. The (strong) CAP prin-
ciple [6, 11] provides that only two of the three requirements
can be achieved, e.g., a system can be available and consis-
tent but not be partition-tolerant. However, the weak CAP
principle provides room for system optimizations by viewing
the interdependency in a non-binary way: the stronger guar-
antees are provided for two of these properties, the weaker
guarantees can be provided for the third.

Obviously, these three properties have to be balanced ac-
cording to an application’s requirements. Moreover, it would
be beneficial if the system could adapt to changes of con-
text, requirements, or user needs. In our work we specifi-
cally focus on context changes and the associated changes
of user needs in the case of node or link failures. We assume
the crash failure model [4] for nodes—pause-crash for server
nodes—and links may fail by losing some messages but do
not duplicate or corrupt messages. Link failures may sub-
sequently lead to network partitions, effectively splitting a
system into parts that are not able to communicate. How-
ever, as node and link failures cannot be differentiated at
the time when they occur [5], we initially treat node failures
as partitions with a single node. Whether a node or link
failed is detected later when the node is reachable again.

Failures are threats to dependability [1] and hence to avail-
ability and integrity. While failures affecting availability
might lead to a non-responsive system, integrity violations
may lead to inconsistent data. Within this paper, we fo-
cus on constraint consistency [9], i.e., consistency of data
with respect to data integrity constraints. These constraints
stem from an application’s requirements, which are typi-
cally stated in informal language, such as “There must not
be more passengers on an airplane than available seats.” for
example. We will subsequently call this the ticket-constraint.

While the requirement is clear and easy to state, its imple-
mentation and maintenance at runtime might be challeng-
ing due to other conflicting requirements such as high avail-
ability. Replication [12], the process of maintaining several
copies (replicas) of the same entity (data item, object), is
well-known to provide fault tolerance for improved availabil-
ity in case of node and link failures. To improve availability
even further, write access to replicas in different partitions
is desirable in case of network partitions. This, however,

froihofer
Textfeld
© ACM, 2007. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in the Proc. of the 1st Workshop on Middleware/Application Interaction, http://doi.acm.org/10.1145/1238828.1238837

introduces inconsistency into the system, potentially violat-
ing the application requirements. To manage such situa-
tions, we integrated constraint consistency management as
a new middleware service [8]. This service primarily uses
callback functions to provide control to the application at
any time application-specific processing is required. While
our target systems initially were distributed object systems,
allowing for remote method invocation (RMI) to perform
callbacks to clients, we faced challenges for Web-based ap-
plications where a callback from the Web server to the Web
browser in order to involve the end-user is simply not pos-
sible. Consequently, we contribute with a solution to this
callback issue. Moreover, we discuss and summarize several
middleware/application interaction mechanisms applied to
support adaptive dependability within several prototype im-
plementations [2, 8, 13] in diverse industrial settings such as
control and information systems.

Paper overview.
We provide an overview of our approach to support adap-

tive dependability in Section 2 before we contribute with our
solution to the callback problem for Web-based systems in
Section 3. In Section 4, we discuss our implementation as
well as the middleware/application interactions applied to
support adaptive dependability. Finally, we provide related
work in Section 5 and conclude this paper in Section 6.

2. MIDDLEWARE SUPPORT FOR
ADAPTIVE DEPENDABILITY

Our concept of middleware support for adaptive depend-
ability is based on an explicit runtime balancing of the two
dependability attributes [1] integrity (consistency) and avail-
ability with respect to node and link failures. In order to
achieve this goal, we make parts of an application’s require-
ments (the data integrity constraints) explicitly available
and processable during runtime. We further decouple con-
straint validation from the business transactions (typically
an atomic set of operations) by partially deferring it to a
later point in time. Hence, explicitness and decoupling play
a key role to gain the required flexibility for adaptive be-
haviour.

Generally, a data integrity constraint is a predicate on the
system state or state transitions. Within our work, we focus
on static constraints, i.e., constraints defined solely on the
system state that is, for example, represented by Enterprise
JavaBeans (EJB) entity beans. Dynamic constraints de-
fined upon state transitions, sequences of state transitions,
or temporal predicates are not within the focus of our work.
To make constraints explicitly available at runtime, each
constraint is implemented in a separate class according to a
pre-defined interface. This interface specifies a validate(. . .)
method that has to return true in case the constraint is
satisfied or false if it is violated. While these constraints
are straightforward to implement, the management of the
constraints and their consistency becomes rather complex
in replicated distributed object systems that are subject to
node and link failures. In this case, constraint validation is
affected by failures as well.

Suppose we have a distributed flight booking system, an
airplane with 80 seats of which 70 are already booked, and
the system now suffers from a network partition. Due to the
high availability requirement for this system, we allow write

access in different partitions, temporarily accepting poten-
tial inconsistencies. Assume that customers buy seven tick-
ets in partition A, which now has a total of 77 sold tickets.
The ticket-constraint is satisfied in this partition. Subse-
quently, customers buy eight tickets in partition B, leading
to 78 sold tickets in partition B. The ticket-constraint is also
satisfied in this partition. After the network partitions are
reunified, the system has to reconcile the updates made in
the different partitions, effectively leading to 85 sold tickets
in total. Consequently, our ticket-constraint is now violated.
To solve this issue, five customers will be rebooked to an-
other flight.

The previous example shows that although a constraint
is satisfied in degraded mode while node or link failures are
present, it might be the case that it is violated afterwards
when the system recovers from a previous failure. Conse-
quently, constraint validation is not reliable during degraded
mode and we are only able to determine that a constraint
is possibly satisfied, possibly violated or even uncheckable
if the constraint requires unreachable objects for validation.
We call such situations a consistency threat [9].

Obviously, the effects of a consistency threat depend on
the application and have to be cleaned up in an application-
specific way. However, other tasks such as detection of node
or link failures, triggering the validation of constraints at
appropriate times, detection of consistency threats or the
replication support can be implemented in the middleware.
To actually decide, whether a specific consistency threat
is acceptable, i.e., it does not lead to catastrophic conse-
quences and its effects can be cleaned up after all nodes are
reachable again, we perform an application callback. This
negotiation callback provides the constraint and the objects
affected by the consistency threat to the application pro-
vided negotiation handler. The application in turn can ex-
amine the situation and decide of whether to accept or reject
the consistency threat. If the threat is accepted, the current
operation/transaction continues—otherwise it is aborted.

Accepted consistency threats are persistently stored by
the middleware and processed again during the reconcilia-
tion phase in order to evaluate whether a consistency threat
actually introduced a constraint violation. If a constraint is
violated, e.g., 85 tickets sold for a plane with 80 seats, we use
another callback to the application-provided reconciliation
handler in order to trigger the clean-up of the inconsisten-
cies. The reconciliation handler might clean up the incon-
sistencies immediately, e.g., automatically or by blocking as
long as the human operator is working on the clean-up, or
return before the inconsistency is solved by providing this
fact to the middleware. Differentiation between these two
types (immediate vs. deferred reconciliation) works via the
return parameter of the callback. If the application returns
true, it specifies that the constraint violation is resolved.
In this case, the middleware will revalidate the constraint
and remove the threat if the inconsistency has actually be
solved. Otherwise, it will contact the reconciliation handler
again. If the application returns false, the reconciliation
of the constraint violation will be performed at some time
later under the application’s responsibility. In this second
case, the reconciliation handler might apply asynchronous
message passing within the system or send an e-mail noti-
fication to the system operator. However, the cleanup of
the threat by the application is detected by the middleware
through the fact that the corresponding constraint is satis-

Client IS-Interceptor CCMgr EntityBean

invokeEntityBean

beforeInvocation(EntityBean)

check preconditions

invoke

result

check post-conditions and invariants

result

afterInvocation(EntityBean)

NegHandler

registerNegHandler

consistency threat

accept

remember threat

Middleware

Application

Legend:

Network boundary

Figure 1: Consistency threat negotiation in distributed object systems

fied by a business operation. Subsequently, it will remove
the consistency threat from persistent storage.

3. CALLBACKS IN WEB APPLICATIONS
Before we discuss the issue of callbacks in Web applica-

tions, we will revisit the negotiation callback scenario within
our middleware for distributed object systems as illustrated
in Figure 1. At some time before a client makes a call to
an entity bean, it registers a consistency threat negotiation
handler with the constraint consistency manager (CCMgr).
Calls to components in EJB and hence entity beans are
made through the invocation service. Several interceptors
responsible for different tasks can be registered with this in-
vocation service. One interceptor responsible for constraint
consistency management notifies the CCMgr before and af-
ter method invocations in order to allow the validation of
constraints affected by the current operation. If the sys-
tem operates in degraded mode, consistency threats may
arise from these constraint validations. These consistency
threats have to be negotiated by contacting the registered
negotiation handler, potentially crossing a network bound-
ary between the server and the client.

While such behaviour is possible and straight-forward to
implement in distributed object systems communicating via
remote method invocation (RMI), it is more challenging in
Web-based systems because a callback to the Web browser
is simply not possible, see also first part of Figure 2. More-
over, the hypertext transfer protocol (HTTP) is based on a
strict request/response behaviour. The business request is
sent to the Web server and the browser is waiting for the re-
sponse. Before the response is actually available, negotiation
of potential consistency threats has to be performed, i.e., re-
quests from the middleware to the application are necessary.
Consequently, some logic has to be placed into the Web ap-
plication to match this request/response discrepancy.

When a negotiation request arrives from the middleware,
the negotiation logic in the Web application has to extract
the information provided to the negotiation handler, exam-
ine the situation, provide an appropriate response to the
Web browser and block the thread by which the negotiation
request was received. Effectively, this forwards the negotia-
tion callback request via the HTTP response for the business

Figure 2: Different request/response behaviour of
distributed object-based and Web-based systems

request to the Web browser. While the user examines the
situation in front of the Web browser, the negotiation thread
is blocked in the Web server. The negotiation decision is re-
turned via a new HTTP request. This request is actually
the response to the negotiation callback request. Hence, the
Web negotiation logic has to map the request to the waiting
negotiation thread. After certain parameters are set, e.g., a
boolean flag of whether the consistency threat is accepted,
the negotiation thread is interrupted and can continue. In
order not to block the negotiation thread indefinitely, the
Web negotiation logic can resume it by not accepting the
consistency threat after a timeout. However, in case the
threat was accepted, the business operation continues in its
usual way, but the results have to be transmitted back to
the browser via the HTTP response for the HTTP request
providing the negotiation result. This further requires to
suspend the new HTTP request with the negotiation result
until the result of the business operation (or a new negotia-
tion request) is received.

This request/response discrepancy and its solution are
shown in Figure 2, where the conceptual requests and re-
sponses as they could be performed with RMI are drawn
with thick grey lines1 and the HTTP requests/responses are
drawn with thin black lines. Figure 2 first illustrates that a
callback to the browser from the Web server is not possible
in the way of straightforward calls. Thereafter, it shows the
solution where the negotiation request is transferred over
the HTTP response for the business request and the nego-
tiation response is transferred back to the Web server via a
new HTTP request. Finally, the business response is trans-
ferred back to the browser via the HTTP response for the
HTTP request with the negotiation response.

While the previous concepts allowed the same behaviour
and user experience for Web-based applications as for dis-
tributed object systems, it is partially impossible to achieve
this for the reconciliation callback. The reconciliation han-
dler of the application is called by the middleware whenever
a violated constraint is detected in the reconciliation phase.
Upon such a callback, distributed object systems have the
possibility to immediately clean up the inconsistency by po-
tentially involving a human operator and return true to the
middleware, stating that the inconsistency was solved and
the middleware should re-evaluate the corresponding con-
straint. Web-based applications can only usefully apply the
second option of deferred reconciliation if interaction with
a human operator is required. In this case, the applica-
tion has to take note of the inconsistency, e.g., through
database entries or sending an e-mail to an operator, and
return false to the middleware to specify that the inconsis-
tency will be solved later and the middleware should ignore
the inconsistency at first. This decision is persistently stored
by the middleware along with the consistency threat. For
the ticket-constraint, the reconciliation handler would mark
overbooked flights and send an e-mail to an operator. The
operator afterwards rebooks passengers to other flights as
appropriate, thereby cleaning up the inconsistencies. In this
case it does not matter whether reconciliation is performed
through an RMI client or a Web-based client.

We ensured the practical feasibility of our approach with
an implementation of these concepts in a flight booking
prototype. This application builds upon the Struts Web
framework (http://struts.apache.org/) and an EJB ap-
plication that is deployed within a JBoss application server
(http://www.jboss.org/) enhanced with support for repli-
cation and constraint consistency management [9].

4. DISCUSSION
The previous sections introduced to the problem and the

usage of callbacks to achieve a balancing of the two depend-
ability attributes integrity and availability. As a proof of
concept, prototype studies have been performed within in-
dustrial settings in strong cooperation with companies from
communications and control engineering industry within the
DeDiSys project (http://www.dedisys.org/). This section
provides further details on middleware/application interac-
tion within these prototypes as well as a discussion of spe-
cific design alternatives we investigated during the prototype
studies [2, 8, 13].

1In coloured printouts, green illustrates the business re-
quests/responses from the application and orange the ne-
gotiation requests/responses from the middleware.

Besides the explicit interaction through predefined inter-
faces we use metadata and invocation interception as pro-
gramming abstractions for coordination of and implicit in-
teraction between application and middleware. The meta-
data about constraints is provided by the application de-
veloper and includes information such as when to check a
specific constraint or whether the constraint can be relaxed
(potentially be violated) during degraded mode or recon-
ciliation in order to enhance availability. The constraints
themselves are implemented by the application developer.
However, triggering constraint validation and management
of consistency threats and associated data is performed by
the middleware according to the metadata specifications.
Therefore, the middleware provides support for the balanc-
ing between availability and integrity but the actual bal-
ancing is achieved through a combination of services and
artifacts provided by the middleware (CCMgr, replication,
etc.) and the application (constraints, metadata, etc.).

Invocation interception is a well-known mechanism to pro-
vide middleware services to an application and available in
several middleware technologies, such as EJB, CORBA, or
.NET. However, middleware traditionally is a layer between
the presentation and the resource layers and hosts the ap-
plication. Consequently, the middleware or the middleware
services are primarily triggered in case of remote invoca-
tions. While EJB already triggers middleware services for
local invocations, this is only the case for invocations made
upon an interface but not the actual implementation of a
bean itself. Therefore, method calls of a single instance to
itself are plain Java invocations. Unfortunately, constraints
can be triggered by an arbitrary method, not only by meth-
ods invoked via remote method invocation (RMI) or via the
bean interface. Hence, integration of constraint consistency
management as a middleware service requires the possibil-
ity to intercept each and every method of an application.
We use Aspect-Oriented Programming (AOP) to satisfy this
requirement—thereby complementing the traditional mech-
anisms for invocation interception and introducing another
kind of application interception by the middleware.

One more kind of interaction between middleware and ap-
plication we use is the concept of exceptions. For example,
the CCMgr throws a ConstraintViolation exception if it de-
tects that constraints of the application are violated by a
business operation in healthy mode. In degraded mode, it
throws ConsistencyThreat exceptions for not accepted con-
sistency threats. While the detection of inappropriate situ-
ations is performed by the middleware, the treatment of the
consequences has to be performed by the application.

Furthermore, our middleware enhancement uses persis-
tence to reliably manage consistency threats, i.e., it stores
them when they occur to be able to re-evaluate them later
during system reconciliation. Thereby, we decouple con-
straint validation from the business transactions. Appli-
cation data associated with a consistency threat is stored
along with the threat, effectively relieving the application
from any management of threats and data associated with
them.

While there are no reasonable alternatives for invocation
interception (including AOP) or persistence, we evaluated
alternatives for the explicit callbacks between middleware
and application. The negotiation of consistency threats is
a synchronous/blocking task, i.e., an operation/transaction
cannot continue and especially not commit successfully as

http://struts.apache.org/
http://www.jboss.org/
http://www.dedisys.org/

Figure 3: Exceptions break the flow of control

long as there is no decision of whether to accept or reject a
specific threat. However, negotiation can be performed im-
mediately when a threat occurs or be deferred until the end
of a transaction. In any case, we should be able to continue
and commit the transaction if all threats are accepted. Due
to this behaviour, a callback is most appropriate to achieve
the negotiation task.

However, an alternative to the callback for negotiation of
consistency threats would be to throw an exception to indi-
cate the consistency threat. The application would have to
investigate the exception details and retry the operation by
signalling the middleware to accept the threat(s). This has
the drawback that the threat that occurs the second time,
e.g., 85 out of 80 tickets booked, might be different than the
first time, e.g., 75 out of 80 tickets booked, but might be
accepted due to the decision of the application. Unfortu-
nately, continuing the operation at the point the exception
occurred is generally not possible, as the invocation stack is
already lost. This is especially true for nested invocations
and illustrated in Figure 3 where A would have to call B, B
call C, and C call D again after the exception indicating a
consistency threat occurred at some point in the method of
D. Other mechanisms such as asynchronous calls or message
passing are not useful for threat negotiation either due to
the blocking behaviour of negotiation. The only advantage
of asynchronous behaviour would be for long-lasting trans-
actions where deferred negotiation is possible. In this case,
negotiation of threats could take place in parallel while the
transaction continues with the assumption that all threats
will be accepted. Of course, the transaction has to block be-
fore commit until the decisions for all occurred threats are
available.

Due to the use of a callback for constraint reconcilia-
tion, we allow for immediate cleanup of constraint viola-
tions caused by accepted consistency threats as soon as the
violation is detected. However, we allow constraint reconcil-
iation via asynchronous behaviour as well. Based on our ex-
perience with the prototype implementations, asynchronous
reconciliation is the usual case as constraint reconciliation
might often require user intervention. Moreover, it is es-
pecially useful for Web applications where a callback to a
Web browser is simply not possible. While it is possible
to circumvent this limitation by letting the browser poll for
constraint violations and perform the same technique as for
the negotiation handler, this is a rather cumbersome and
resource-wasting behaviour. Another alternative would be
to run a Java Applet within the Web browser. Consequently,
intermediate callbacks could be made to the applet support-
ing this behaviour. However, this—as any kind of “real call-

Table 1: Middleware/Application interactions
Mechanism Purpose Remarks
Invocation
interception

Enables the
middleware to
provide
middleware
services.

AOP allows to
intercept calls that
otherwise would not
trigger middleware
services.

Callback Immediate
response
required.

Support for
asynchronous
behaviour through
callbacks that do
not immediately
have to succeed.

Exception Indication that
“something”
failed, e.g., a
constraint is
violated.

Exceptions break
the flow of control,
requiring an
abort/retry
behaviour.

Metadata Application-
specific
configuration of
the middleware.

Configuration of
constraints (classes,
affected methods,
etc.) and callbacks.

Persistence The middleware
manages
consistency
threats while the
application may
access them.

This provides
interaction based
on shared memory
semantics.

Asynchronous
behaviour,
e.g. message
passing

For
operations/tasks
lasting for longer
time periods such
as constraint
reconciliation.

Only indirectly
supported via
reconciliation
callback that can
opt for this
behaviour.

back” from the server to the client—has the drawback that
intermediate firewalls might block the call.

Table 1 summarizes the middleware/application interac-
tion mechanisms within our system. Callbacks, exceptions,
asynchronous behaviour, and interaction via persistence are
interactions between middleware and application that an ap-
plication developer has to explicitly address or use. Invoca-
tion interception is used only implicitly, i.e., transparently
to the application developer, to achieve middleware tasks.
Finally, the usage of metadata allows an application-specific
configuration of the middleware.

5. RELATED WORK
Geihs et al. [10] address adaption of component-based dis-

tributed applications based on the model-driven paradigm.
The adaptability of an application is specified within the
model with the goal to provide the best possible service to
the user according to context and user preferences. Based
on this model, application and middleware artifacts can be
generated. While our current systems do not apply model-
driven elements, we are investigating this approach to sup-
port the application developer with code generation for in-
tegrity constraints similar to Verheecke et al. [14] and gen-
eration of the corresponding metadata. Related work with
respect to the trade-off between availability and integrity/-
consistency is further discussed in [8].

The usage of metadata and reflection is also proposed by
Capra et al. [3] as a concept to address mobility. In their
approach, metadata is specified by the application, but is
managed by the middleware. Consequently, the middleware
adapts to changes in the context, e.g., bandwidth, battery
power, network connection/connectivity, etc. according to
the metadata—also called an application profile. We sup-
port this argument to use metadata. However, we also see
metadata as a promising approach to master the increasing
complexity in todays systems.

XMLBlaster (http://www.xmlblaster.org/) is a message-
oriented middleware tool that allows callbacks from a Web
server to the browser via persistent HTTP connections. This
connection is opened by the browser (specified via the Con-
nection: keep-alive parameter) or a Java applet if the applet
variant is used. The server sends messages—which might
actually be callbacks—over this connection to the browser
in form of data chunks. Client-side processing of these mes-
sages is performed either via JavaScript or within the Java
applet depending on the technology used. This enables call-
backs to the browser through a dedicated HTTP connection
while we on the other hand use the HTTP connection of
the original request and return a usual HTML (HyperText
Markup Language) page. Moreover, we explicitly have to
close the connection through Connection: close to not pro-
duce a deadlock caused by a single thread serving a single
HTTP connection. However, these two approaches can be
combined as well.

6. CONCLUSION
While the balancing of the two dependability attributes

availability and integrity is a rather complex task, it still can
be achieved by building upon callbacks as the primary ex-
plicit middleware/application interaction mechanism. How-
ever, to fully achieve the desired behaviour, the callbacks
are supported with exception handling, asynchronous be-
haviour, metadata, invocation interception, and persistence.
Although callbacks are a well-known principle, they are some-
times hard if not even impossible to achieve in systems where
they are not foreseen to be used, e.g., Web-based systems
when a callback to the browser is required. Within this
paper we contributed with a solution to this callback is-
sue as well as a discussion of several middleware/interaction
mechanisms used to achieve the desired balancing of the two
dependability attributes integrity and availability.

Based on the experience of prototype implementations in
industrial settings we require middleware/application inter-
action to be performed in a configurable and flexible way.
This is strongly supported by middleware architectures that
allow application-specific configuration and behaviour based
on metadata and application-provided middleware “plug-
ins”. Therefore, future research should not only concentrate
on new mechanisms of middleware/application interaction
but also on how to build/architect middleware and how to
concert the different interaction mechanisms in order to re-
duce complexity and support middleware/application inter-
action in a flexible and application-specific way. A key for
efficient interaction between middleware and application is
coherence of concern, achieved through decoupling, localiza-
tion, and explicitness of particular policies and properties.
The resulting performance impairments are typically offset
by the gain in flexibility [7]—at least after a while when the
technologies mature.

Acknowledgments
We thank Hubert Künig for many in-depth discussions and Bern-
hard Rieder who strongly contributed to the prototype for Web
callbacks. This work has been partially funded by the European
Community under the FP6 IST project DeDiSys (Dependable
Distributed Systems, http://www.dedisys.org/, contract 004152).

7. REFERENCES
[1] A. Avižienis, J.-C. Laprie, B. Randell, and C. E.

Landwehr. Basic concepts and taxonomy of
dependable and secure computing. IEEE Trans.
Dependable Sec. Comput., 1(1):11–33, 2004.

[2] S. Beyer, P. Galdámez, and F. D. Muñoz Escoi.
Implementing network partition-aware fault-tolerant
CORBA systems. In Proc. 2nd Int. Conf. on
Availability, Reliability and Security. IEEE CS, 2007.

[3] L. Capra, W. Emmerich, and C. Mascolo. Reflective
middleware solutions for context-aware applications.
In A. Yonezawa and S. Matsuoka, editors, Reflection,
volume 2192 of Lecture Notes in Computer Science,
pages 126–133. Springer, 2001.

[4] F. Cristian. Understanding fault-tolerant distributed
systems. Communications of the ACM, 34(2):56–78,
1991.

[5] M. J. Fischer, N. A. Lynch, and M. S. Paterson.
Impossibility of distributed consensus with one faulty
process. J. ACM, 32(2):374–382, 1985.

[6] A. Fox and E. A. Brewer. Harvest, yield and scalable
tolerant systems. In Workshop on Hot Topics in
Operating Systems, pages 174–178, 1999.

[7] L. Froihofer, G. Glos, J. Osrael, and K. M. Goeschka.
Overview and evaluation of constraint validation
approaches in Java. In Proc. 29th Int. Conf. on
Software Engineering. IEEE CS, 2007.

[8] L. Froihofer, J. Osrael, and K. M. Goeschka. Trading
integrity for availability by means of explicit runtime
constraints. In Proc. of the 30th Intl. Conf. on
Computer Software and Applications, 2006.

[9] L. Froihofer, J. Osrael, and K. M. Goeschka.
Decoupling constraint validation from business
activities to improve dependability in distributed
object systems. In Proc. 2nd Int. Conf. on
Availability, Reliability and Security. IEEE CS, 2007.

[10] K. Geihs, M. U. Khan, R. Reichle, A. Solberg,
S. Hallsteinsen, and S. Merral. Modeling of
component-based adaptive distributed applications. In
SAC ’06: Proceedings of the 2006 ACM symposium on
Applied computing, pages 718–722. ACM Press, 2006.

[11] S. Gilbert and N. Lynch. Brewer’s conjecture and the
feasibility of consistent, available, partition-tolerant
web services. SIGACT News, 33(2):51–59, 2002.

[12] A. A. Helal, A. A. Heddaya, and B. B. Bhargava.
Replication Techniques in Distributed Systems. Kluwer
Academic Publishers, 1996.

[13] J. Osrael, L. Froihofer, G. Stoifl, L. Weigl, K. Zagar,
I. Habjan, and K. M. Goeschka. Using replication to
build highly available .NET applications. In Workshop
Proc. of the 17th Int. Conf. on Database and Expert
Systems Applications, pages 385–389. IEEE CS, 2006.

[14] B. Verheecke and R. V. D. Straeten. Specifying and
implementing the operational use of constraints in
object-oriented applications. In Proceedings of the
Fortieth International Conference on Tools Pacific,
pages 23–32. Australian Computer Society, Inc., 2002.

http://www.xmlblaster.org/
http://www.dedisys.org/

	Introduction
	Middleware Support for Adaptive Dependability
	Callbacks in Web Applications
	Discussion
	Related Work
	Conclusion
	References

